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PREFACE 
 
 
 

 
 
This doctoral thesis consists of 5 research articles, proceeded by a scientific introduction and concluded by a 

general discussion, conclusion, and future perspectives. The research articles follow the standard scientific 

IMRAD structure (Introduction, Methods, Results, and Discussion), and were based on the following peer-

reviewed publications: 

 

Article 1 

Preda F, Morgan N, Van Gerven A, Nogueira-Reis F, Smolders A, Wang X, Nomidis S, Shaheen E, Willems 

H, Jacobs R. Deep convolutional neural network-based automated segmentation of the maxillofacial complex 

from cone-beam computed tomography: A validation study. J Dent. 2022 Sep;124:104238. doi: 

10.1016/j.jdent.2022.104238. Epub 2022 Jul 21. PMID: 35872223. (shared first-authorship) 

 

Article 2 

Morgan N, Van Gerven A, Smolders A, de Faria Vasconcelos K, Willems H, Jacobs R. Convolutional neural 

network for automatic maxillary sinus segmentation on cone-beam computed tomographic images. Sci Rep. 

2022 May 7;12(1):7523. doi: 10.1038/s41598-022-11483-3. PMID: 35525857; PMCID: PMC9079060. 

 

Article 3 

Nogueira-Reis F, Morgan N, Nomidis S, Van Gerven A, Oliveira-Santos N, Jacobs R, Tabchoury CPM. Three-

dimensional maxillary virtual patient creation by convolutional neural network-based segmentation on cone-

beam computed tomography images. Clin Oral Investig. 2022 Sep 17. doi: 10.1007/s00784-022-04708-2. 

Epub ahead of print. PMID: 36114907. 

 

Article 4 

Morgan N, Shujaat S, Jazil O, Jacobs R. Three-dimensional quantification of skeletal midfacial complex 

symmetry. Int J CARS (2022). https://doi.org/10.1007/s11548-022-02775-0  

 

 

https://doi.org/10.1007/s11548-022-02775-0
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Article 5 

Morgan N, Cortellini S, Shujaat S, Nogueira-Reis F, Temmerman A, Quirynen M, , Jacobs R. Artificial 

intelligence-assisted evaluation of volumetric bone graft changes following maxillary sinus augmentation. 

Journal of clinical periodontology. (Submitted) 
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1. Digitalization in dentistry 

 

Digital dentistry refers to the incorporation of computer-controlled components and dental 

technologies for assisting dental professionals with patient communication, diagnostics, treatment 

planning, and follow-up evaluation. Some examples of devices and tools categorized under digital 

dentistry include, intraoral scanners, computer-aided design/computer-aided manufacturing 

(CAD/CAM) hardware and software programs, three-dimensional (3D) printers, virtual and 

augmented reality and digital radiographic devices (computed tomography [CT], cone-beam CT 

[CBCT], magnetic resonance imaging [MRI]). This digitization of workflows in clinical dentistry has 

overcome the limitations associated with traditional methods by offering improved precision of dental 

procedures, time-efficiency and higher standard of patient care1, 2. 

In recent years, digital technologies have been implemented in the majority of dentomaxillofacial 

workflows such as, restorative dentistry, orthodontics, dental implantology and maxillofacial 

reconstructive surgery3. The replacement of dental impression materials with intra-oral scanners has 

revolutionized fabrication of fixed and removable prostheses. With the use of CAD/CAM technology, 

it is now possible to deliver dental restorative treatment at a single visit with predictable outcomes4-

9. In orthodontics, virtual planning with the application of digital models has enabled simulation of 

orthodontic treatment (Figures 1), virtual tooth set-up (Figure 2), tracking of treatment progress at 

follow-up and fabrication of orthodontic appliances via 3D printing10-12. The digital workflows in 

dental implantology have facilitated 3D simulation of implant placement with high precision (Figure 

3) and designing of surgical guides13, 14. In maxillofacial reconstructive surgery, multimodal image 

registration (Figure 4) involving a combination of CBCT, intra-oral scan and/or facial soft tissue, and 

computer-assisted fabrication of surgical guides have improved outcomes of orthognathic and other 

reconstructive surgical procedures with a decrease in blood loss and less operation time. Furthermore, 

the incorporation of dynamic navigation systems in digital workflows of implantology and 

reconstructive surgery have improved the accuracy of surgical procedures compared to freehand 

approaches by providing real-time guidance15, 16. 

Although the steps involved in digital workflows may vary depending on the procedure being 

planned, certain commonalities are shared by these workflows, which include 3D CBCT-based data 

acquisition and segmentation, for creating a virtual model of the anatomical structures3. 
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Figure 1. Digital workflow of mini-implant placement in maxilla: A) CBCT scan with inserted 
mini-implants in OnyxCeph3TM, B) Intraoral scan, C) 3D virtual model of segmented maxilla from 

CBCT, D) registered intraoral and CBCT scans in Planmeca Romexis®. 

A B C 

D 
E F 

Figure 2. Digital workflow of orthodontic setup: A)&B) CBCT scan and 3D reconstructed model in 
Planmeca Romexis®, C) 3D virtual model of segmented teeth from CBCT ((creator.relu.eu, Relu BV), 

D) intraoral scan (3shape), E) segmented intraoral scan registered with segmented teeth 
(OnyxCeph3TM), F) segmented mandible registered with intraoral scan(Relu platform). 
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Figure 3. Digital workflow of virtual implant placement (yellow color) with surgical guide 
(purple color) planning in maxillary arch showing registered CBCT reconstructed model, 

intraoral scan (red color), and designed surgical guide (purple color) in Planmeca 
Romexis®. 

Figure 4. Digital workflow of bimaxillary advancement surgical planning showing CBCT 
reconstructed model (yellow color), registered intraoral scan (red color), and planned 

moved parts (blue and green colors) in 3D Surgery™, Dolphin. 
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1.1 CBCT data acquisition 

 

Since the development of CBCT imaging in the early 1980s, it  has been widely employed for 

diagnosis, pre-operative treatment planning, and post-operative follow-up evaluation in all fields of 

dentistry17. The conventional CT devices have almost become obsolete and replaced with CBCT 

imaging for dentomaxillofacial applications owing to the following reasons: 

Size and cost: CBCT equipment has a much smaller size and physical footprint, and it costs around 

one-fourth to one-fifth the price of a CT device. 

Variable field of view (FOV): The ability of CBCT devices to optimally collimate the primary x-ray 

beam and only cover the area of interest has made it possible to select patient-specific FOVs 

depending on the task at hand. 

Fast acquisition: Scan time is drastically reduced to less than 30 seconds due to advancements in 

solid state detector frame rate, improved computer processing speed, and the ability of CBCT devices 

to capture all projection pictures in a single turn.  

Sub-millimeter resolution: As an x-ray detector, most CBCT units use “mega pixel solid state 

devices” for high resolution imaging with voxel sizes ranging from 0.076 to 0.125 mm isotropically, 

which is optimal for radiologically examining fine dental details such as periodontal space, root 

canals, root resorption or fracture, and peri-implant bone defects.  

Low patient radiation dose: In contrast to CT imaging, the absorbed dose from CBCT is highly 

reduced. A traditional CT exposes patients to 6-8 times more radiation compared to CBCT when 

scanning either maxilla or mandible18, while 18 times more for capturing both maxilla and 

mandible19. 

Interactive analysis: Although CT data is digital, the images are normally made available to clinicians 

as hard copies on film transparencies. Furthermore, CT software packages for data reformatting 

require workstations with high computational power. In contrast, CBCT data is provided in digital 

format and data reconstruction can be performed using personal computers with low power. The 

CBCT raw datasets are also “isotropic” in nature, hence allowing image reorientation based on 

patient’s anatomic structures. In addition, the availability of user-friendly algorithms provides 

clinicians with the ability to interact with the images in real-time and easily perform dimensional 

assessments17.  

Unique display modes for maxillofacial imaging: CBCT devices have more advanced image 

processing functions compared to CT imaging. In addition to reconstructing conventional multiplanar 

reconstructed (MPR) images in coronal, sagittal, and axial orthogonal planes, CBCT also provides 
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oblique MPR, curved oblique MPR, and cross-sectional MPR views. These views facilitate 

diagnostics and planning in dentomaxillofacial workflows by providing reconstructed images 

generally employed in a clinical setting, such as cephalometry, panoramic, and temporomandibular 

joint (TMJ) multiplanar images.  Moreover, 3D volumetric surface generation of the anatomical 

region of interest is also possible using volume rendering techniques commonly based on maximum 

intensity projection. 

Even though CBCT imaging has been regarded as a standard for dentomaxillofacial imaging, it is still 

prone to certain limitations, such as limited contrast resolution for soft tissue visualization and image 

degradation due to the presence of metal and motion artifacts.   

 

1.2 Segmentation  

The first and most essential step in the majority of digital dental workflows is segmentation, a process 

by which regions of interest are extracted from CBCT images for generating 3D models of the 

dentomaxillofacial structures. Any flaw in this step would negatively impact the final outcome. 

Segmentation techniques are usually divided into three categories: manual, semi-automatic, and 

automatic20.  

1.2.1 Manual segmentation 

Manual segmentation refers to a slice-by-slice delineation of the region of interest on two-

dimensional (2D) CBCT planes by an expert and acts as a clinical standard for segmentation. 

However, it is prone to certain limitations, such as labor-intensiveness, increased time-consumption, 

and observer variability21, 22.  

1.2.2 Semi-automated segmentation 

Based on the aforementioned limitations, semi-automatic segmentation has been widely adopted for 

segmentation of CBCT images in dentomaxillofacial workflows, mostly via thresholding-based 

approaches23, 24. These approaches function by selecting the most appropriate threshold level for the 

region of interest based on images pixel values, which is automatically expanded to the rest of slices. 

Hence, eliminating the need for slice-by-slice segmentation. However, this threshold level is selected 

based on the principle that the entire region of interest has a similar density. Therefore, the final 

segmentation lacks optimal delineation due to the presence of different structural densities, and 

manual post-processing is often required. Thin bony structures also require manual intervention to 

segment due to limited threshold selection values. In addition, presence of metal  artifacts further 

makes it difficult to segment  owing to a high intensity similarity of grey values between bone and 

artifacts25.  
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These limitations are due to the fact that the currently available dentomaxillofacial segmentation 

software programs have been optimized based on CT data, which cannot be applied to CBCT scans 

due to the presence of uncalibrated absolute Hounsfield units (HU), beam hardening artifacts, noise, 

and low-contrast resolution26-28.  

1.2.3 Automated segmentation 

Artificial intelligence (AI) in the form of deep learning (DL) has been employed for automated 

segmentation to overcome the limitations associated with both manual and semi-automated 

segmentation approaches. The term “artificial intelligence” was first coined in 1956 by John 

Macarthy. It is broadly defined as the ability of computers and machines to mimic human intelligence 

quotient (IQ)29. Machine learning is a subset of AI that builds algorithms and rules guided majorly 

by structured data and has the ability to capture intrinsic statistical patterns and structure by learning. 

It has been widely applied for problem-solving tasks, decision-making processes, and uncovering 

patterns and trends in data30. DL is defined as a subset of machine learning which uses artificial neural 

networks (ANNs) that partially resemble neural networks of the human brain and rely on an enormous 

amount of structured and/or unstructured data as a core for solving complex problems. It surpasses 

its predecessor, machine learning, in performance by offering an improved ability to deal with high 

dimensional data with multiple predictor variables. Besides, DL can automatically learn feature 

hierarchies such as edges, shapes, and corners31, define what is important and predict the output32. 

In deep learning, convolutional neural networks (CNNs) have demonstrated excellent performance 

in the field of image analysis. It employs multi-layer neural computational connections for image 

processing tasks such as classification and segmentation31. However, CNN-based deep learning 

approaches require a large amount of labeled data for training and a specialized graphics processing 

unit (GPU) for the construction of automated models. There is also an issue of model generalizability, 

where the trained model might not perform well with a dataset acquired with different devices having 

variable acquisition parameters. In addition, the training for segmentation is usually performed by a 

single observer; hence, the built model might have the same bias as the observer20. In the midst of 

these limitations, the main advantages of deep-learning based automated segmentation are its high 

performance, consistency, and reproducibility. 

U-Net, one of the most popular DL-based CNN architectures, has been widely employed for medical 

image segmentation tasks33. It consists of a contracting path (encoder) and an expansive path 

(decoder), giving the U-shaped architecture. In addition, its contracting path follows a typical 

architecture of a CNN model that consists of repeated applications of convolutions, followed by a 

rectified linear unit (ReLU) and max pooling operations, while in the expansive path, pooling layers 

are replaced by upsampling layers to increase the resolution of the output33 (Figure 5).  



General introduction | 8 
 

For volumetric segmentation of medical images, 3D U-Net, an extension of U-Net is commonly used, 

which replaces 2D operations with their 3D counterparts. This enables to directly take the entire 3D 

image as an input to train the model rather than taking each slice separately34. Since their 

development, U-Net models have been successfully applied for various medical image segmentation 

tasks, such as segmentation of skin lesions on dermoscopy images35, brain tumor on MR images36, 

and heart on the diffusion tensor cardiac MR images37.  

Recently, in the field of dentomaxillofacial radiology, 3D U-Net architectures have been trained for 

the automated segmentation of craniofacial anatomical structures (mandible38, 39, mandibular canal40, 

41, pharyngeal airway space42, teeth43, 44), facilitating diagnosis and computer-guided treatment 

planning in dental implantology, traumatology, orthognathic surgery, and other reconstructive 

surgical procedures. However, no evidence exists related to the automated segmentation of midfacial 

structures.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. U-net architecture (example for 32x32 pixels in the lowest resolution). The orange boxes 

corresponds to a multi-channel feature map. The number of channels is denoted on top of the 
box. White boxes represent copied feature maps. The arrows denote the different operations. 

conv 3x3, ReLU 
 Copy and crop 
 max pool 2x2 
 

conv 1x1 

up-conv 2x2 
 

Input 
Image 
 file 

Output 
segmentation 
map 

1 
 

64 
 

64 
 

128 
 

128 
 

128 
 

128 
 

256 

256 256 256 512 

512 512 512 

1024 

1024 

64 
 

64 
 

2 
 



General introduction | 9 
 

2. Midfacial structures 

 

The midface resembles a polyhedron-shaped box region of the facial region, which is maintained by 

a bony framework and separates the oral from orbital cavity. It can be subdivided into a bony 

component (midfacial skeletal complex) and air component (maxillary sinuses). 

 

2.1 Midfacial skeletal complex 

The midfacial skeletal complex is the middle portion of the osseous facial architecture, which 

contributes significantly to defining the facial form. It consists of maxilla, nasal skeleton, orbital rim, 

and zygoma (including the entire length of the zygomatic arches), which are bounded by 

frontomaxillary, frontozygomatic, and frontonasal suture lines. Clinically, the midfacial skeletal 

complex is a region of vital interest to segment for ensuring accurate diagnosis, patient-specific 

treatment planning (designing patient-specific osteotomy and repositioning guides, occlusal splints, 

fixation plates, and 3D printed models), and follow-up assessment of orthognathic and other 

maxillofacial reconstructive surgical procedures. Owing to the anatomical complexity and reduced 

bone thickness of the maxillary skeletal complex, it is one of the most difficult anatomical regions to 

segment with conventional approaches (manual/semi-automatic). Hence, resulting in a clinically 

significant over- and/or under-estimation of the segmented skeletal structure45, 46 and requiring a 

laborious amount of manual correction. 

 

2.2 Maxillary sinuses 

The pyramid-shaped maxillary sinus is the largest paranasal sinus, which lies in the body of the 

maxilla and is surrounded by the midfacial skeletal complex. An accurate segmentation of the 

maxillary sinus is also critical for various diagnostic and treatment planning tasks that require 

evaluation of sinus changes47, 48. The most common surgical procedures requiring 3D sinus 

assessment through segmentation include surgical implant treatment, sinus augmentation49, 50, and 

orthognathic surgery. Although the maxillary sinus is a well-defined cavity, its segmentation is 

difficult due to the presence of sinus thickening and its close proximity to the nasal passages and teeth 

roots. 
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3. Clinical applications of automated segmentation 

 

In addition to introducing and validating automated approaches for midfacial structures segmentation, 

it is also important to explore their clinical applicability for improving the standard of patient care. In 

this context, automated segmentation of both the midfacial skeletal complex and maxillary sinus was 

applied for assessing facial symmetry and sinus graft changes, respectively. 

 

3.1 Symmetry assessment 

Facial skeletal symmetry is a balanced state where right and left hemifacial structures exhibit an 

identical mirror image of each side with equal similarity in shape, size, and position51-53. It can also 

be defined as the positioning of bilateral anatomical structures at a similar distance from an arbitrary 

reference plane54. However, perfect symmetry is rarely observed due to the presence of certain 

biological and environmental factors which can negatively influence the facial developmental 

process, thereby, leading to variations in the symmetry55. 

The normal range of variation in symmetry is expressed as relative symmetry56, 57 or fluctuating 

asymmetry58, where a random difference exists between right and left sides59. Minimal facial 

asymmetry within the normal range might be acceptable in a general population without the concern 

of aesthetic or functional problems60. Nevertheless, it is essential to accurately quantify such an 

acceptable normal range, especially prior to the treatment planning of patients requiring orthodontic 

and/or surgical correction of facial asymmetry as well as functional and esthetic rehabilitation60.  

Facial hard tissue symmetry has been widely reported, yet a concern still exists related to the 

quantification of normal symmetry range61-64. Furthermore, most prior studies have reported on the 

symmetry based on 2D linear and/or angular landmark-based methodology using panoramic 

radiography65, lateral cephalometry66, 67or photographs68. As a 2D approach offers several limitations, 

such as image distortion, magnification, and structural superimposition, it cannot be considered a true 

representative of 3D facial structure69, 70. Nowadays, 2D imaging techniques have been widely 

replaced with 3D CT and CBCT acquisition devices, which have proven to offer accurate and 

quantitative information related to the amount and localization of facial asymmetry in a normal 

population71-73. Based on a systematic review55, prior studies assessed the 3D symmetry of complete 

facial skeleton54, zygoma74-77, and orbital structures using geometric morphometrics. This process 

involves surface segmentation followed by mirroring and registration to assess the symmetry.  
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The reason why such 3D morphometric methods are preferred over landmark-based dimensional 

measurements is because these account for the shape, size, and position of the segmented structures 

instead of solely relying on the landmark distances on orthogonal planes 78-80. Saying that, no studies 

are available assessing the geometric morphometry of midfacial skeletal structures using AI-based 

automated segmentation techniques. Hence, it is important to apply CNN-based approaches to 

overcome the limitations associated with conventional manual/ semi-automated approaches for 

assessing symmetry.  

 

3.2 Sinus graft follow-up 

Maxillary sinus augmentation is aimed to reconstruct and increase the posterior maxillary bone 

volume by lifting the Schneiderian membrane and placing a bone graft in preparation for dental 

implant placement. To date, various graft materials have been successfully used for sinus 

augmentation, which are broadly classified into four categories: autograft81-84, allograft85-87, 

xenograft88-91, and alloplastic graft92-94.   

Over time, these bone grafts undergo resorption at varying rates depending on the type of material 

and sinus re-pneumatization 95,96. This graft resorption could have a significant impact on the success 

and survival rate of the dental implant. Hence, accurate quantification of graft changes prior to and 

following implant placement is essential to determine whether adequate graft height, width, and 

volume remain at follow-up.  

Post-surgical radiographic examination of sinus changes at follow-up is well-established in 

literature82, 97-110 Previously, 2D periapical and panoramic radiography have been used to measure the 

vertical and horizontal bone graft height changes103, 105, 107, 109, 111. However, such techniques are 

unable to provide 3D changes in bone morphology and volume. Hence, these have been replaced with 

CBCT102, 103, 110 imaging, which allow a more accurate and true 3D representation of graft changes. 

The changes at follow-up are quantified by segmenting either maxillary sinuses or bone grafts from 

the CBCT datasets and calculating the volumetric or dimensional differences at different post-

operative time-intervals49, 112-114. The method of choice for segmentation is either manual or semi-

automatic, which could be impacted by operator-inconsistency, threshold level, and CBCT pixel 

values. In addition, it is difficult to extract the graft from the neighboring bone, particularly following 

healing when there is no clear demarcation between the graft and native bone102. Hence, sinus 

segmentation could be a better alternative for interpreting sinus changes. The application of such deep 

learning-based approaches might enable a more precise and consistent volumetric quantification of 

sinus/graft changes and further improve the standard of care. 



General introduction | 12 
 

4. Aims and Hypotheses 

 

The overall aim of the PhD project is twofold. Firstly, to validate a CNN-based deep learning tool for 

automated 3D segmentation of midfacial skeletal structures and maxillary sinus on CBCT images. 

Secondly, to evaluate the performance of digital clinical workflows for midfacial skeletal symmetry 

and sinus/graft changes assessment following incorporation of an automated segmentation tool.   

 

This doctoral thesis is divided into two main parts, each with its respective objectives. 

 

Part 1 Automated segmentation  

Recently, CNNs have proven to provide excellent performance in the field of 3D image analysis. 

However, a lack of evidence exists considering the CNN-based automated segmentation of the 

midfacial structures. Furthermore, no automated approach specialized in segmenting different 

structures with variable densities simultaneously has been proposed in the literature, which could 

pave the way towards the creation of a virtual patient. Both individual and simultaneous segmentation 

of anatomical structures as a single unit could be useful for a multitude of clinical applications in 

general dentistry and maxillofacial surgery.  

The objectives were: 

- To validate CNN-based deep learning tool for automated segmentation of the midfacial 

skeletal complex on CBCT images. 

- To validate CNN-based deep learning tool for automated segmentation of the maxillary sinus 

on CBCT images. 

- To assess the qualitative and quantitative performance of an integrated tri-CNN model for the 

creation of a maxillary virtual patient (MVP) consisting of the maxillary skeletal complex, 

maxillary sinuses, and teeth. 

The hypothesis was that:  

A CNN-based deep learning approach for automated individual and simultaneous anatomical 

structural segmentation could act as an accurate, consistent, and time-efficient tool, with the 

possibility of replacing conventional manual and semi-automated approaches. 
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Part 2 Clinical applications of automated segmentation 

 

(A) Symmetry assessment  

Skeletal structural segmentation is the most vital step in the symmetry assessment protocol. To our 

knowledge, no protocol exists for quantifying skeletal symmetry with the application of CNN-based 

segmentation approaches. 

The objective was: 

- To investigate symmetry of the midfacial skeletal complex in skeletal class I patients using a 

3D CNN-based automated segmentation tool. 

The hypothesis was that: 

The automation of the segmentation step and provision of midfacial complex symmetry data would 

enhance the precision and time-efficiency of the symmetry evaluation process for further clinical 

applicability in patients requiring mirroring for reconstructive surgery. 

 

(B) Sinus graft follow up 

Post-surgical evaluation of the bone graft following sinus augmentation is essential for ensuring its 

optimal stability and a high success rate of implant treatment. To our knowledge, no study exists 

applying CNN-based automated sinus segmentation for assessing graft changes at follow-up. 

The objective was: 

- To quantify volumetric bone graft changes following sinus augmentation at a follow-up period 

of 6 months using a CNN-based maxillary sinus segmentation approach. 

The hypothesis was that: 

The application of automated maxillary sinus segmentation could lay a platform towards 

simplification of digital workflow for graft follow-up assessment. 
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Abstract  

Objectives 

The present study investigated the accuracy, consistency, and time-efficiency of a deep CNN-based 

model for automated maxillofacial bone segmentation from CBCT images. 

Materials and methods 

A dataset of 144 scans was acquired from two CBCT devices and randomly divided into three subsets: 

training set (n = 110), validation set (n = 10) and testing set (n = 24). A 3D U-Net (CNN) model was 

developed, and the achieved automated segmentation was compared with a manual approach. 

Results 

The average time required for automated segmentation was 39.1s, with a 204-fold decrease in time 

consumption compared to manual segmentation (132.7 min). The model was highly accurate for 

identification of the bony structures of the anatomical region of interest, with a dice similarity 

coefficient (DSC) of 92.6%. Additionally, the CNN model was 100% consistent, providing identical 

segmentation results if a similar scan was processed without any variability. The inter-observer 

consistency for expert-based minor correction of the automated segmentation observed an excellent 

DSC of 99.7%. 

Conclusions 

The proposed CNN model provided a time-efficient, accurate, and consistent CBCT-based automated 

segmentation of the maxillofacial complex. 

Clinical significance 

Automated segmentation of the maxillofacial complex could act as a potent alternative to the 

conventional segmentation techniques for improving the efficiency of digital workflows. This 

approach could deliver accurate and ready-to-print 3D models that are essential to patient-specific 

digital treatment planning for orthodontics, maxillofacial surgery, and implant placement. 

 

Keywords: Bone segmentation, Deep learning, Neural network model, Computer generated 3D 

imaging, Digital dentistry. 
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1. Introduction 

 

The integration of digital technology within each step of a dental workflow has transformed dentistry, 

where the contemporary 2D approaches are gradually becoming obsolete and being superseded by 

advanced 3D digital tools. In the era of precision dental medicine, digitalization has been widely 

applied in the majority of dental workflows1,2. Although a consensus exists around the potential 

benefits of using 3D digital tools for enhancing the quality of care, their universal acceptability is 

partially hindered by the laborious nature of certain steps requiring considerable expertise in both 

clinical dentistry and medical image processing tools for various tasks, such as 3D radiographic data 

segmentation and integration, virtual treatment planning, and CAD/CAM3,4. 

The first and most essential step in the digital workflow of the majority of digital dental workflows 

is known as segmentation, which involves the generation of 3D models of the dentomaxillofacial 

structures. The most commonly applied methodologies for segmentation are either thresholding or 

template-based and semi-automatic in nature5–7 (Figure 1A). These techniques are prone to certain 

limitations, such as missing thin bony structures, excessive time-consumption8, a steep learning 

curve, observer variability, and the need for manual refinement. In the presence of metal artifacts 

from high-density materials, an extensive amount of manual post-processing is required by a trained 

operator owing to a high intensity similarity of grey values between bone and artifacts9. Furthermore, 

the currently available dentomaxillofacial segmentation software programs have been optimized 

based on CT data, which cannot be applied to CBCT scans due to the presence of uncalibrated 

absolute Hounsfield units (HU), beam hardening artifacts, inhomogeneity, noise, and low-contrast 

resolution10–12. All these factors negatively affect the quality of the scan and the accuracy of bone 

segmentation. 

Considering the limitations of the conventional segmentation methods, recent applications of deep 

CNNs have outperformed the previously available algorithms for modelling of the dentomaxillofacial 

region13–17. These CNNs have been successfully applied with promising results for the CBCT-based 

automated segmentation of the teeth, upper airway, inferior alveolar nerve canal, mandible, and 

maxillary sinus18–23. However, a lack of evidence exists considering the CNN-based automated 

segmentation of the maxillofacial complex. 

The maxillofacial complex holds a unique position in the workflows of orthognathic and 

reconstructive surgery, dental implantology, and orthodontics for ensuring an accurate diagnosis, 

patient-specific treatment planning (designing and manufacturing patient-specific osteotomy and 

repositioning guides, orthodontic devices, spacers, occlusal splints, fixation plates/implants, and 3D 

printed models), and follow-up assessment. It is one of the most difficult anatomical regions to 
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segment with conventional approaches owing to the anatomical complexity and reduced bone 

thickness, which often leads to a clinically significant under- and/or over-estimation of the segmented 

skeletal structure24,25 hence requiring a laborious amount of manual corrections. Therefore, it is 

important to assess whether CNN-based automated segmentation of the maxillofacial complex can 

simplify the segmentation process by offering an accurate and observer-independent alternative to 

the present conventional approaches. 

The present study aimed to investigate the performance of a deep CNN-based model for automated 

maxillofacial complex bone segmentation from CBCT images. We hypothesized that a deep CNN 

approach would offer a more accurate, consistent, and time-efficient segmentation of the 

maxillofacial complex compared to the manual segmentation as the reference standard. 

 

Fig. 1. Semi-automatic segmentation (thresholding-based) of the (A) upper skull ( lateral and 

frontal view) and (B) maxillofacial complex with corresponding manual segmentation (C and D). 

 

2. Materials and methods 

This study was performed in accordance with the Declaration of  Helsinki on medical research. 

Ethical approval was acquired from the Medical Ethics Committee of University Hospitals, KU 

Leuven, Leuven, Belgium (Reference No.: S57587). Informed consent was not required as patient 

information was anonymized. The study was carried out in line with the recommendations of 

Schwendicke et al. for reporting on artificial intelligence in dental research26. 
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2.1. Dataset  

A total of 144 scans were acquired from two CBCT devices, NewTom®VGI Evo (QR, Verona, Italy) 

and 3D Accuitomo® 170 (J. Morita, Kyoto, Japan), with variable scanning parameters (Table 1). 

Inclusion criteria consisted of adult patients with permanent dentition. Scans of patients having dental 

implants, coronal/root fillings, sinus pathology, or having orthodontic brackets were also included. 

Patients with a history of maxillofacial trauma, orthognathic and maxillofacial reconstructive surgery, 

syndromic or degenerative diseases, and cleft lip and palate were excluded. The sample size was 

calculated based on previously comparable studies19,22 using a priori power analysis in G* power 3.1, 

assuming a paired two-sided t-test to compare intervention groups (neural network and observers) on 

the test dataset with a power of 80% and a significance level of 5%. 

 

Table 1. CBCT scanning parameters. 

 

 

The CBCT images were exported in Digital Imaging and Communication in Medicine (DICOM) 

format and were randomly distributed into 3 subsets: a training set (n = 110), for CNN model training 

and fitting based on the labelled ground truth; a validation set (n = 10), for hyperparameter 

optimization and selection of an ideal model architecture; and a testing set (n = 24), to evaluate the 

model’s performance including comparison with manual expert segmentation, used as a benchmark. 

Device Number of 

scans 

Field of view (cm) Voxel size (mm) 

NewTom V Gievo (QR, Verona, Italy) 83 24 x 19 

16 x 16 

15 x 12 

10 x10 

8 x 8 

0.30 

0.25 

0.10 

3D Accuitomo 170 (J. Morita, Kyoto, 
Japan) 

61 17 x 12 

14 x 10 

10 x 10 

10 x 5 

8 x 8 

0.25 

0.20 

0.125 
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2.2. Ground truth labelling 

2.2.1 Upper skull 

A dataset of 30 CBCT scans acquired from NewTom device with full field of view (FOV 24x19 cm) 

were labelled manually in Mimics Innovation Suite (version 23.0, Materialise N.V., Leuven, 

Belgium) in order to train a preliminary model for segmentation of the upper skull (all the hard tissues 

of the head with the exception of the mandible) (Figure 1C). After importing the DICOM files into 

Mimics software, the manual segmentation was performed using multiple slices edit with automatic 

interpolation and a live wire function for delineation and fine-tuning of the upper skull’s bony 

contours. The crowns of the teeth were cropped and removed to isolate the bony region of interest. 

All contours were checked in three orthogonal planes (sagittal, axial, and coronal) and in 3D volume 

rendering. Finally, the created mask of the upper skull was exported in Standard Tessellation 

Language (STL) file format for further processing in the CNN pipeline. Three experienced observers 

(an orthodontist, a maxillofacial radiologist, and one oral surgeon) performed this task, and the final 

segmentation was reassessed in a slice-by-slice manner by all the observers and corrections were 

performed if needed. 

 

2.2.2. Maxillofacial complex 

The preliminary model for automated segmentation of the upper skull indicated the need for 

refinement, specifically in the maxillofacial region. Moreover, this region is commonly included in 

the majority of the CBCT’s FOVs and acts as a region of interest for maxillofacial surgeons, 

radiologists, and orthodontists, depending on the task at hand27. Hence, the initial 30 cases were 

manually adjusted to confine the maxillofacial complex, including the palatine, maxillary, zygomatic, 

nasal, and lacrimal bones, defining the zygomaticotemporal, zygomaticofrontal, pterygomaxillary, 

pterygopalatine, frontomaxillary, and frontonasal sutures (Figure 1D). An additional dataset of 80 

scans from both devices (NewTom and Accuitomo) was added to further train the model. Out of 

these, 32 scans were manually segmented as described above. Later, the manual segmentation of the 

remaining 48 scans was partially supported by the trained CNN model itself, which still required 

some modifications. These 48 scans were added in three training stages, allowing for gradual 

improvement of the model while decreasing the time needed for the manual segmentation with each 

stage. This step was performed by three observers (an orthodontist and two maxillofacial radiologists) 

and one of them rechecked all the segmentations to ensure that the agreed protocol was followed in 

relation to the anatomical extent and level of accuracy. 
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2.3 AI network architecture and training  

Two CNN models were used in the pipeline with 3D U-Net architecture28. Each network consisted 

of four contracting encoders and three expansive decoder blocks made up of two convolutions, 

followed by a rectified linear unit (ReLU) activation and group normalization29 with eight feature 

maps. All convolutions had a kernel size of 3x3x3, 1 stride, and 1 dilation. A max pooling operation 

was applied after each encoder, reducing the spatial information by a factor of 2 in all dimensions. 

The U Nets were trained as a binary classifier with a weighted Binary Cross Entropy Loss: 

 

𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑦𝑦𝑛𝑛 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑝𝑝𝑛𝑛) + (1 − 𝑦𝑦𝑛𝑛) ∗ 𝑙𝑙𝑙𝑙𝑙𝑙 (1 − 𝑝𝑝𝑛𝑛) 

 

For each voxel n, where yn is the ground truth value (0 or 1) and pn refers to the predicted probability 

of the network. The training dataset was pre-processed using a two-step technique. Firstly, scans were 

resampled to an identical voxel size. Secondly, the full-size scans were down-sampled to a fixed size 

(96x96x96) at a lower resolution to overcome the memory limitations of the GPU (Figure 2). Two 

3D U-Nets used for the segmentation operate at different fixed scan resolutions. The rough 

segmentation is performed on a voxel size of 1.5 mm/voxel (low resolution), while the subsequent 

fine segmentation on a voxel size of 0.23 mm/voxel (high resolution). At the end of the pipeline, both 

the scan and the AI predictions are resampled to the original scan resolution. 

Subsequently, scans were imported into the primary 3D U-Net, which was specifically trained to 

segment low resolution scans. This rough segmentation was used to suggest 3D patches and clip only 

the patches belonged to the maxillofacial complex. These patches were in turn given to the second 

U-Net, finely segmented and then merged to produce a full resolution segmentation map. Thereafter, 

binarization was applied, and the largest connected component remained. Then, a marching cubes 

algorithm was applied to the binary image, and the predicted segmentation map was turned into an 

STL in a separate processing step. The resultant mesh was smoothed by a windowed-sinc function 

interpolation kernel that was run for 20 iterations with a passband value of 0.1 to create a 3D model 

suitable for different clinical applications20,22.  

The model parameters were optimized via Adam30  with an initial learning rate of 1.25e-4 which was 

halved seven times during 300 epochs. Random spatial augmentations such as scaling, elastic 

deformation, and rotation were applied during training31. To prevent overfitting, early stopping was 

applied on the validation set. For accessibility, the CNN model was deployed to “Virtual Patient 

Creator” (creator.relu.eu, ReLu BV, Version October 2021), an online interactive imaging platform.  



Article 1 Automated segmentation of maxillofacial complex | 33 
 

The users can upload CBCT images and obtain the automated segmentation of dentomaxillofacial 

structures (Figure 3). The segmentation can be downloaded as an STL file and used externally. Full 

details regarding the hardware used are provided as supplementary material. 

Fig. 2. 3D U-Net convolutional neural network pipeline for automated segmentation of the 

maxillofacial complex. 

2.4 Testing of CNN pipeline 

Testing of the CNN pipeline was carried out via the Virtual Patient Creator platform. The acquired 

automated segmentation was analysed visually by three operators. The types of identified flaws and 

their extent were documented and classified as follows; 

a- Excellent segmentation (no correction required), 

b- Very good segmentation (minor correction needed, with no clinical significance such as slight 

under- or over-segmentation of the ROI apart from the maxillary sinus walls or palate), 

c- Good segmentation (minor correction needed, having some clinical significance such as slight 

under- or over-segmentation of the ROI apart from the maxillary sinus walls or palate, slight over-

segmentation of the foraminal margins), 

d- Insufficient segmentation (significant over- or under-segmentation with repetition needed) 

Following classification, the AS was downloaded in STL format and manually corrected by two 

operators using Mimics software, if needed. The adjusted segmentation was denoted as “corrected 

segmentation (CS)”. 
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Fig. 3. Automated segmentation on the Virtual Patient Creator platform. A: segmentation of the 

maxillofacial complex, B: online tools for adjustment C: other structures of the dentomaxillofacial 

region available for segmentation on the platform. 
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2.5 Evaluation metrics 

One operator manually segmented 12 CBCT scans with different FOVs from the testing dataset for 

comparison with the corresponding automated segmentation (AS). Additionally, semi-automatic 

segmentation (SA) was performed using Mimics software with thresholding from 500 to 700 and 

compared with the manual segmentation (Figure 1B, D). Two independent operators performed the 

needed corrections (CS) on the whole testing set (24 CBCT scans) and compared the outcomes with 

the AS. 

2.5.1. Time 

The time needed for the MS was calculated starting after the import of DICOM data in Mimics till 

exporting the STL file. For automated segmentation, the algorithm directly registered the time needed 

to build a full resolution binary segmentation. For corrected segmentation, the time taken by the CNN 

model and the time spent for manual correction were summed up. 

2.5.2. Accuracy 

A confusion matrix was used to compare the different types of segmentation at the voxel level using 

four variables: true positive (TP), true negative (TN), false positive (FP), and false negative (FN) 

voxels. The accuracy of the resultant automated segmentation was evaluated based on the following 

metrics32,33:  

Dice similarity coefficient (DSC) refers to the voxel overlap between volume A and B divided by 

their total number of voxels. A DSC equals 1 means complete overlap. 

 

𝐷𝐷𝐷𝐷𝐷𝐷(𝐴𝐴,𝐵𝐵)  =  
2|𝐴𝐴 ∩ 𝐵𝐵|
|𝐴𝐴| + |𝐵𝐵| =   

2𝑇𝑇𝑇𝑇
2𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

 

95% Hausdorff distance (HD): shows the maximum distance between all pairs of voxels belonging 

to volumes A and B. The 95% HD is used to avoid the impact of outliers. 

95% HD =𝑇𝑇95(min
𝑎𝑎𝑎𝑎𝑎𝑎

�|𝐵𝐵 − 𝐴𝐴|�
2
∪ min

𝑏𝑏𝑎𝑎𝐵𝐵
�|𝐴𝐴 − 𝐵𝐵|�

2
) 

 

Intersection over union (IoU): refers to the voxel overlap between volume A and B divided by their 

union. An IoU equals 1 indicates complete overlap. 

𝐼𝐼𝑙𝑙𝐼𝐼(𝐴𝐴,𝐵𝐵)  =  
|𝐴𝐴 ∩ 𝐵𝐵|
|𝐴𝐴 ∪ 𝐵𝐵| =   

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝐹𝐹 
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For surface comparison, the STL files were imported to 3-matic software (Materialise NV, Leuven, 

Belgium), and part comparison analysis was applied to calculate the root mean square (RMS). This 

allowed measurement of the overlap difference between two surfaces. An RMS equals 0 mm implies 

a complete match. 

𝑅𝑅𝑅𝑅𝐷𝐷 (𝑥𝑥) = �1
𝑛𝑛

 (𝑥𝑥12 +  𝑥𝑥22 + ⋯+  𝑥𝑥𝑛𝑛2) 

x = the distance (in millimeters) between the two surfaces' closest points. 

2.5.3. Consistency 

The trained CNN model was fully consistent as it performed a predefined set of mathematical 

operations. This enabled the model to keep producing identical segmentation every time it processed 

the same scan. Hence, the model was not assessed for its consistency. The inter-operator consistency 

was assessed by allowing two operators to perform the needed corrections of the testing set. 

Afterwards, the generated STL files were compared to each other. 

2.6 Statistical analysis 

Data were analysed with RStudio (Integrated Development Environment for R, version 1.3.1093, 

PBC, Boston, MA). The mean and standard deviation were calculated for all the evaluation metrics.  

 

3. Results 

3.1 Timing 

The average time required for manual segmentation (12 CBCT scans) was 132.7 minutes, compared 

to the corresponding times of 39.07 seconds (203.8-fold time reduction) and 9.13 minutes (13.5-fold 

time reduction) for automated and corrected segmentation, respectively (Figure 4). 

The average time needed for the manual correction of the testing set (24 CBCT scans) by the two 

operators was 9.33 minutes and 11.11 minutes, respectively. The corresponding average time for 

automated segmentation was 43.41 seconds. 

3.2 Accuracy 

Table 2 and Figure 5 illustrate the evaluation metrics for model accuracy compared to ground truth. 

The CNN model demonstrated a high DSC of 92.6% and a 95% HD of 0.62 mm, thereby confirming 

high similarity between automated and manually segmented 3D surfaces. For the comparison between 

semi-automated and manual segmentation, the accuracy metrics revealed a DSC of 68.7% and a 95% 

HD of 2.78 mm. 
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Fig. 4. Timing (in seconds) of manual segmentation (MS) and automated segmentation (AS). 

 

 

 

Fig. 5. STL comparison map between A) semi-automatic, B) automated segmentation versus 

manual segmentation. 
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Table 2. Evaluation metrics for accuracy.  
 

Metric Descriptive analysis AS vs MS SA vs MS 

DSC Mean 

SD 

Min 

Max 

0.926 

0.010 

0.909 

0.944 

0.687 

0.071 

0.504 

0.767 

95%HD (mm) Mean 

SD 

Min 

Max 

0.621 

0.126 

0.447 

0.823 

2.78 

0.404 

2.2 

3.56 

IoU Mean 

SD 

Min 

Max 

0.862 

0.017 

0.834 

0.894 

0.527 

0.078 

0.337 

0.622 

RMS (mm) Mean 

SD 

Min 

Max 

0.5 

0.137 

0.296 

0.741 

1.76 

0.267 

1.46 

2.26 

 

AS: Automated segmentation, MS: Manual segmentation, SA: Semi-automatic segmentation, SD: 

Standard deviation, Min: Minimal value, Max: Maximal value, DSC: Dice Similarity Coefficient, 

HD: Hausdorff Distance, IoU: Intersection over Union, and RMS: root mean square. 

 

3.3 Consistency 

Table 3 presents the evaluation metrics for inter-operator consistency (for expert-based minor 

correction of the AS). According to the evaluation specifically designed by the authors for clinical 

appraisal, all AS scored a, b, or c, requiring minor to no corrections for errors of limited or no clinical 

impact. No segmentation was considered insufficient (d). 

The comparison between automated and corrected segmentation showed an almost perfect overlap 

with a DSC of 99.8% and a 95% HD of 0% for both operators, indicating that minimal corrections 

were performed. An improved overlap was observed between automated and corrected segmentation 

compared to automated and manual segmentation. The inter-operator consistency also showed 

excellent DSC (99.7%) and 95% HD (0.009). 
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Table 3. Evaluation metrics for consistency. 
 
 

Metric 

Descriptive 

analysis 

AS vs CS 

(operator 1) 

AS vs CS 

(operator 2) 

Inter-observer 

DSC Mean 

SD 

Min 

Max 

0.998 

0.003 

0.988 

0.999 

0.998 

0.002 

0.994 

0.999 

0.997 

0.003 

0.989 

0.999 

95%HD 

(mm) 

Mean 

SD 

Min 

Max 

0 

0 

0 

0 

0 

0 

0 

0 

0.009 

0.042 

0 

0.200 

IoU Mean 

SD 

Min 

Max 

0.996 

0.006 

0.977 

0.999 

0.997 

0.003 

0.988 

0.999 

0.995 

0.005 

0.979 

0.999 

RMS (mm) Mean 

SD 

Min 

Max 

0.098 

0.135 

0.012 

0.572 

0.082 

0.079 

0.014 

0.273 

0.099 

0.12 

0.015 

0.521 

 
AS: Automated segmentation, CS: Corrected segmentation, SD: Standard deviation, Min: Minimal 

value, Max: Maximal value, DSC: Dice Similarity Coefficient, HD: Hausdorff Distance, IoU: 

Intersection over Union, and RMS: root mean square. 

 

4. Discussion  

An accurate segmentation of the maxillofacial complex from CBCT images is a prerequisite in the 

majority of dentomaxillofacial workflows for the creation of a 3D virtual patient model. The main 

clinical applications requiring segmented maxillofacial complex include orthognathic and 

reconstructive surgical treatment planning, designing of patient-specific implants, orthodontic virtual 

set-up and post-operative follow-up assessment of skeletal tissue34–42. 

Complete automatization and increasing the time-efficiency of the segmentation are necessary 

elements to consider which might have the ability to surpass the limitations of the currently available 

segmentation algorithms and software programs irrespective of the operator’s experience. Therefore, 
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the current study proposed a fully automated deep learning CNN model for maxillofacial bone 

segmentation from CBCT images. 

The generalizability of the proposed CNN model was ensured by using two CBCT devices with 

different scanning parameters and including scans with the presence of metal artifacts from implants, 

fillings, and orthodontic brackets. The model was able to segment the maxillofacial complex with an 

average time of less than one minute, which allowed a significant 204-fold decrease in the time 

required compared to manual segmentation. Moreover, the model showed high accuracy, comparable 

with the segmentation provided by clinical experts. This adds to the advantage of transferring the 

creator´s expertise to all subsequent users through knowledge accumulation during the training phase. 

In contrast, manual segmentation is dependent on the operator’s experience, suffers from a steep 

learning curve, and is prone to inter- and intra-operator variability, which could negatively impact the 

accuracy of the segmented region of interest. Additionally, the inconsistency between operators was 

quite minor, as observed by the classification based on the amount of required correction. However, 

both automated and corrected segmentation showed a perfect overlap because the mentioned 

corrections referred to a minimal region of the whole volume. 

While using manual segmentation as a reference, the semi-automated approach revealed a 25% lower 

DSC score compared to the automated approach. This lower scoring could be attributed to the fact 

that the semi-automatic approach was unable to segment thin bony structures with the adjusted 

threshold level (Figure 1A, B). Furthermore, the ability of the proposed model to delineate the 

maxillofacial complex based on sutural limits could act as a viable tool for computer-assisted 

planning and follow-up assessment of maxillofacial reconstructive procedures. 

Previous evidence related to CNN-based maxillofacial bone segmentation methodologies is 

heterogeneous, and no studies have reported on maxillofacial complex segmentation from CBCT 

images. Hence, the findings of the current study were compared to those assessing segmentation of 

the upper skull, with datasets derived from both CT and CBCT devices. Dot et al.43 found a DSC 

value of 96% for the segmentation of the upper skull from CT images with an average time of 10 

minutes using a U-Net framework. Yang and Su24 applied AI-enabled segmentation in Mimics viewer 

for the segmentation of the upper skull from CT images and reported a DSC of 92.4%. Ham et al.44  

proposed a 3D U-Net based approach for the segmentation of craniofacial hard tissue structures from 

CBCT images and showed a DSC score of 82.8%. In comparison, the model presented in the current 

study showed a similar range of accuracy to a model originating from CT-derived data, whereas the 

model’s performance was higher compared to those using CBCT datasets. As the contrast resolution 

of CT scan is higher with a homogenous intensity distribution, one might expect a more 

straightforward and accurate segmentation17. The same cannot be stated about the CBCT images, 
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where lower image quality and large intensity differences exist and vary between different regions of 

interest, scanning devices, and patients. 

Furthermore, a comparison with existing studies in relation to the time required for segmentation was 

deemed difficult owing to the lack of reporting of this parameter. It should be noted that time is an 

important factor to consider in clinical dentistry, as one of the pillars of an optimal digital workflow 

is time-efficiency. Thereby, future studies applying artificial intelligence for segmentation should 

report time as a primary outcome to improve the level of evidence. 

The main strength of the study was the inclusion of two CBCT devices with different acquisition 

parameters and metal artifacts for training, which enabled a more practical way to assess the 

performance of the model. However, further studies are warranted to assess the model performance 

based on the datasets from other CBCT devices and institutions for justifying its generalizability and 

applicability for regular clinical tasks. A limitation of the proposed method was the exclusion of nerve 

canals and crestal bone, for which further development of the model is currently under progress. 

 

5. Conclusion 

The proposed CNN model is an accurate, consistent, and time-efficient alternative to the conventional 

manual and semi-automated segmentation methods for the generation of a 3D maxillofacial complex 

model. An observer-independent 204-fold time reduction for the segmentation task compared to the 

manual approach and the integration of the model into an online platform can fit the current demands 

of clinical practice without the need of an experienced operator or a computer with high 

computational power. 
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Abstract  

 

An accurate 3D segmentation of the maxillary sinus is crucial for multiple diagnostic and treatment 

applications. Yet, it is challenging and time-consuming when manually performed on a cone-beam 

computed tomography (CBCT) dataset. Recently, convolutional neural networks (CNNs) have 

proven to provide excellent performance in the field of 3D image analysis. Hence, this study 

developed and validated an automated CNN-based methodology for the segmentation of the 

maxillary sinus using CBCT images. A dataset of 264 sinuses was acquired from 2 CBCT devices 

and randomly divided into 3 subsets: training, validation, and testing. A 3D U-Net architecture CNN 

model was developed and compared to semi-automatic segmentation in terms of time, accuracy, and 

consistency. The average time was significantly reduced (p-value < 2.2e−16) by automatic 

segmentation (0.4 min) compared to semi-automatic segmentation (60.8 min). The model accurately 

identified the segmented region with a dice similarity coefficient (DSC) of 98.4%. The inter-observer 

reliability for minor refinement of automatic segmentation showed an excellent DSC of 99.6%. 

The proposed CNN model provided a time-efficient, precise, and consistent automatic segmentation 

which could allow the accurate generation of 3D models for diagnosis and virtual treatment planning. 
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1. Introduction 

 

The maxillary sinus (antrum of Highmore) is the largest of the four paranasal sinuses, which are air-

filled spaces located within the skull surrounding the nasal cavity1. An adult’s maxillary sinus has a 

pyramidal shape and lies in the body of the maxilla. It is bounded superiorly by the orbital floor, 

extending laterally into the zygomatic process of the maxilla and the zygomatic bone. On the medial 

side, it coincides with the lateral wall of the nasal cavity, communicating with it through the sinus 

ostium. The floor of the sinus is formed by the alveolar and palatine processes of the maxilla, which 

is in close proximity to the roots of the maxillary posterior teeth2-5. 

Owing to the vital position of the sinus, its assessment is of paramount importance for maxillofacial 

surgeons, dentists, ENT surgeons, and dentomaxillofacial radiologists1. An accurate three- 

dimensional (3D) segmentation of the sinus is crucial for multiple diagnostic and treatment 

applications, where evaluation of sinus changes, remodeling at follow-up, volumetric analysis6,7 or 

creation of 3D virtual models is required. Furthermore, the most relevant surgical procedures 

requiring sinus assessment include implant placement, sinus augmentation8,9 and orthognathic 

surgery. 

Although the maxillary sinus is a well-delineated cavity, its 3-D segmentation is not a simple task. 

The close proximity of the maxillary sinus to the nasal passages and the teeth roots, along with its 

anatomical variations and frequently associated sinus thickening, makes the segmentation a 

challenging task. Such 3-D segmentations could be performed either by multi-slice (MSCT)10 or 

cone-beam computed tomography (CBCT). In oral health care, the maxillary sinus is mostly 

visualized using CBCT imaging for diagnosis and treatment planning11-13. It provides a multiplanar 

sinus reconstruction, relatively lower radiation dose and isotropic volume resolution14. However, the 

segmentation of CBCT images still remains a challenging task due to the issues of image noise, low 

soft-tissue contrast, beam hardening artifacts, and a lack of absolute Hounsfield Unit15 (HU) 

calibration16,17. 

The manual segmentation of the maxillary sinus on CBCT images is time-consuming and dependent 

on the practitioner’s experience with high inter- and intra-observer variability18. Other techniques, 

such as semi-automatic segmentation, improve the segmentation efficiency, yet they still require 

manual adjustments that can also induce error10,19. Recently, artificial intelligence (AI) technologies 

have started to play a growing role in the field of dentomaxillofacial radiology20,21. In particular, deep 

learning algorithms have gained much attention in the medical field for their ability to handle large 

and complex data, extract useful information, and allow automatic learning of feature hierarchies 

such as edges, shapes, and corners22. 
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Convolutional neural networks (CNNs) are one of the deep learning approaches that have shown 

excellent performance in the field of image analysis. It uses multi-layer neural computational 

connections for image processing tasks such as classification and segmentation22. The application of 

CNN for CBCT image segmentation could overcome the challenges associated with the other 

techniques by providing an efficient and consistent segmentation tool while maintaining anatomical 

accuracy. Therefore, the aim of this study was to develop and validate an automated CNN-based 

methodology for the segmentation of maxillary sinuses on CBCT images. 

 

2. Materials and methods 

This study was conducted in accordance with the standards of the Helsinki Declaration on medical 

research. Institutional ethical committee approval was obtained from the Ethical Review Board of the 

University Hospitals of Leuven (reference number: S57587). Informed consent was not required as 

patient-specific information was anonymized. The study plan and report followed the 

recommendations of Schwendicke et al.23 for reporting on artificial intelligence in dental research. 

2.1 Dataset 

A sample of 132 CBCT scans (264 sinuses, 75 females and 57 males, mean age 40 years) from 2013 

to 2021 with different scanning parameters was collected (Table 1). Inclusion criteria were patients 

with permanent dentition and maxillary sinus with/without mucosal thickening (shallow > 2mm, 

moderate > 4mm) and/or with semi-spherical membrane in one of the walls24. Scans having dental 

restorations, orthodontic brackets and implants were also included. The exclusion criteria were 

patients with a history of trauma, sinus surgery, or the presence of pathologies affecting its contour. 

 

Table 1. CBCT scanning parameters. 

 

Device Number of 
scans 

Field of view (cm) Voxel size (mm) 

Newtom VGi evo (Cefla, Imola, 
Italy) 

71 24 x 19 
16 x 16 
15 x 12 
10 x10 
8 x 8 

0.30 
0.25 
0.10 

3D Accuitomo 170 (J. Morita, 
Kyoto, Japan) 

 
61 

 
17 x 12 
14 x 10 
10 x 10 
10 x 5 
8 x 8 

 
0.25 
0.20 
0.125 
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The Digital Imaging and Communication in Medicine (DICOM) files of the CBCT images were 

exported anonymously. The dataset was further randomly divided into three subsets: 1. a training set 

(n = 83 scans) for training the CNN model based on the ground truth; 2. a validation set (n = 19 scans) 

for evaluation and selection of the best model; and 3. a testing set (n = 30 scans) for testing the model 

performance by comparison with ground truth.  

2.2 Ground truth labelling 

The ground truth datasets for training and testing of the CNN model were labelled by semi-automatic 

segmentation of the sinus using Mimics Innovation Suite (version 23.0, Materialise N.V., Leuven, 

Belgium). Initially, a custom threshold leveling was adjusted between (-1024 to -200 Hounsfield units 

(HU)) to create a mask of the air (Fig.1.a). Subsequently, the region of interest (ROI) was isolated 

from the rest of the surrounding structures. A manual delineation of the bony contours was performed 

using eclipse and the livewire function, and all contours were checked in coronal, axial, and sagittal 

orthogonal planes (Fig. 1.b). To avoid any inconsistencies in the ROI of different images, the 

segmentation region was limited to the early start of the sinus ostium from the sinus side before 

continuation into the infundibulum (Fig. 1.b). Finally, the edited mask of each sinus was exported 

separately as a standard tessellation language (STL) file. The segmentation was performed by a 

dentomaxillofacial radiologist (NM) with seven years of experience and subsequently re-assessed by 

two other radiologists (KFV&RJ) with 15 and 25 years of experience, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a 

b 

Figure 1. (a) Air mask creation using custom thresholding, (b) The edited mask with 3D 

reconstruction (version 23.0, Materialise N.V., Leuven, Belgium). 
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2.3 CNN model architecture and training 

Two 3D U-Net architecture were used25, both of which consisted of 4 encoder and 3 decoder blocks, 

2 convolutions with a kernel size of 3x3x3, followed by a rectified linear unit (ReLU) activation and 

group normalization with 8 feature maps26. Thereafter, max pooling with kernel size 2x2x2 by strides 

of two was applied after each encoder, allowing reduction of the resolution with a factor 2 in all 

dimensions. Both networks were trained as a binary classifier (0 or 1) with a weighted Binary Cross 

Entropy Loss: 

𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑦𝑦𝑛𝑛 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑝𝑝𝑛𝑛) + (1 − 𝑦𝑦𝑛𝑛) ∗ 𝑙𝑙𝑙𝑙𝑙𝑙 (1 − 𝑝𝑝𝑛𝑛) 

for each voxel n with ground truth value  𝑦𝑦𝑛𝑛 = 0 or 1, and the predicted probability of the network =  

𝑝𝑝𝑛𝑛  

A two-step pre-processing of the training dataset was applied. First, all scans were resampled at the 

same voxel size. Thereafter, to overcome the GPU memory limitations, the full-size scan was down 

sampled to a fixed size.  

The first 3D U-Net was used to provide roughly low-resolution segmentation for proposing 3D 

patches and cropped only those which belonged to the sinus. Later, those relevant patches were 

transferred to the second 3D U-Net where they were individually segmented and combined to create 

the full resolution segmentation map. Finally, binarization was applied, and only the largest connected 

part was kept, followed by the application of a marching cubes algorithm on the binary image. The 

resultant mesh was smoothed to generate a 3D model (Fig. 2).  

 

 

Figure 2. Working principle of the 3D U-Net based segmentation model. 
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The model parameters were optimized with ADAM27 (an optimization algorithm for training deep 

learning models) having an initial learning rate of 1.25e-4. During training, random spatial 

augmentations (rotation, scaling, and elastic deformation) were applied. The validation dataset was 

used to define the early stopping, which indicates a saturation point of the model where no further 

improvement can be noticed by the training set and more cases will lead to data overfitting. The CNN 

model was deployed to an online cloud-based platform called “virtual patient creator” 

(creator.relu.eu, Relu BV, Version October 2021), where users could upload DICOM datasets and 

obtain an automatic segmentation of the desired structure. 

2.4 Testing of AI pipeline  

The testing of the CNN model was performed by uploading DICOM files from the test set to the 

virtual patient creator platform. The resulting automatic segmentation (Fig. 3) could be later 

downloaded in DICOM or STL file format. For clinical evaluation of the automatic segmentation, the 

authors developed the following classification criteria: A- perfect segmentation (no refinement was 

needed), B- very good segmentation (refinements without clinical relevance, slight over or under 

segmentation in regions other than the maxillary sinus floor), C- good segmentation (refinements that 

have some clinical relevance, slight over or under segmentation in the maxillary sinus floor region), 

D- deficient segmentation (considerable over or under segmentation, independent of the sinus region, 

with necessary repetition), and E- negative (the CNN model could not predict anything). Two 

observers (NM and KFV) evaluated all the cases, followed by an expert consensus (RJ). In cases 

where refinements were required, the STL file was imported into Mimics software and edited using 

the 3D tools tab. The resulting segmentation was denoted as “refined segmentation”. 

Figure 3. The resultant automatic segmentation on virtual patient creator online platform 

(creator.relu.eu, Relu BV, Version October 2021). 
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2.5 Evaluation metrics 

The evaluation metrics 28,29 are outlined in Table 2. The comparison of outcomes among the ground 

truth and automatic and refined segmentation was performed by the main observer on the whole 

testing set. A pilot of 10 scans was tested at first, which showed a Dice similarity coefficient (DSC) 

of 0.985±004, Intersection over union (IoU) of 0.969±0.007 and 95% Hausdorff Distance (HD) of 

0.204±0.018 mm. Based on these findings, the sample size of the testing set was increased up to 30 

scans according to the central limit theorem (CLT)30. 

 

Table 2. Metrics used for assessing accuracy and consistency. 

Metric 

 

Legend Formula 

Dice similarity 
coefficient (DSC) 

represents the overlap of voxels 
between volume X and volume Y 
divided by the total number of voxels 
in both of them. A DSC of 1 indicates 
complete overlap. 

𝐷𝐷𝐷𝐷𝐷𝐷(𝑋𝑋,𝑌𝑌)  =  
2|𝑋𝑋 ∩ 𝑌𝑌|
|𝑋𝑋| + |𝑌𝑌| 

=   
2𝑇𝑇𝑇𝑇

2𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝐹𝐹 
 

Intersection over 
Union (IoU) 

represents also the overlap of voxels 
between volume X and volume Y 
divided by their union. An IoU of 1 
means perfect overlapping 
segmentation. 

𝐼𝐼𝑙𝑙𝐼𝐼(𝑋𝑋,𝑌𝑌)  =  
|𝑋𝑋 ∩ 𝑌𝑌|
|𝑋𝑋 ∪ 𝑌𝑌| 

=   
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝐹𝐹 
 

95% Hausdorff 

distance (HD) 

represents the maximal distance 
between all pairs of voxels in volume 
X and volume Y. A HD of 0 mm 
indicates a perfect segmentation. 

The 95th percentile is used to eliminate 
the impact of a very small subset of 
outliers. 

𝑑𝑑𝐻𝐻𝑎𝑎𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻  (𝑋𝑋,𝑌𝑌)  
= max�𝑠𝑠𝑠𝑠𝑝𝑝𝑥𝑥𝑎𝑎𝑥𝑥 𝑖𝑖𝑛𝑛𝑖𝑖 𝑦𝑦𝑎𝑎𝑦𝑦 𝑑𝑑(𝑥𝑥,𝑦𝑦), 𝑠𝑠𝑠𝑠𝑝𝑝𝑦𝑦𝑎𝑎𝑦𝑦  𝑖𝑖𝑛𝑛𝑖𝑖𝑥𝑥𝑎𝑎𝑥𝑥  𝑑𝑑(𝑥𝑥,𝑦𝑦)� 

         

         95%HD = ( min
𝑦𝑦 𝑎𝑎 𝑦𝑦

�|𝑥𝑥 − 𝑦𝑦|�
2

 ∪  min
𝑥𝑥 𝑎𝑎 𝑥𝑥

�|𝑦𝑦 − 𝑥𝑥|�
2

) 

 

Root mean square 
distance (RMS) 

measures the imperfections of the fit 
between two surfaces in mm. An RMS 
of 0 mm indicates a perfect match. 

𝑅𝑅𝑅𝑅𝐷𝐷 (𝑥𝑥) = �1
𝑛𝑛

 (𝑥𝑥12 +  𝑥𝑥22 + ⋯+ 𝑥𝑥𝑛𝑛2) 

x= distance (mm) between two closest points of the two 
surfaces 

 

2.5.1 Time efficiency: 

The time required for the semi-automatic segmentation was calculated starting from opening the 

DICOM files in Mimics software till export of the STL file. For automatic segmentation, the 

algorithm automatically calculated the time required to have a full resolution segmentation. The time 

for refined segmentation was calculated similarly to that of semi-automatic segmentation and later 

added to the initial automatic segmentation time. The average time for each method was calculated 

based on the testing set.  
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 2.5.2 Accuracy: 

A voxel-wise comparison amongst ground truth and automatic and refined segmentation of the testing 

set was performed by applying a confusion matrix with four variables: true positive (TP), true 

negative (TN), false positive (FP), and false negative (FN) voxels. Based on the aforementioned 

variables, the accuracy of the CNN model was assessed according to the metrics mentioned in Table 

2.  

2.5.3 Consistency: 

To illustrate the consistency of the CNN model, one scan was uploaded twice on the platform, and 

the resultant STLs were compared. Intra- and inter-observer consistency were calculated for the semi-

automatic and refined segmentation. The intra-observer reliability of the main observer was 

calculated by re-segmenting 10 scans from the testing set with different protocols. For the inter-

observer reliability, two observers (NM and KFV) performed the needed refinements, then the STL 

files were compared with each other. 

2.6 Statistical analysis 

Data were analyzed with RStudio: Integrated Development Environment for R, version 1.3.1093 

(RStudio, PBC, Boston, MA). The mean and standard deviation were calculated for all evaluation 

metrics. A paired-sample t-test was performed with a significance level (p < 0.05) to compare the 

timing required for semi-automatic and automatic segmentation of the testing set.  

 

3. Results 

3.1 Time efficiency: 

The average time required for the semi-automatic segmentation was 60.8 minutes (3649.8 seconds) 

and 24.4 seconds for automatic segmentation, showing a significant reduction (p-value < 2.2e-16). 

Considering the refined data, around 30% of the testing set needed refinements (20% class B, 10% 

class C, no class D and E), with an average refinement time of 7.1 minutes (422.84 seconds). The 

automatic and refined segmentations were approximately 149 and 9 times faster than the semi-

automatic segmentation, respectively. 

3.2 Accuracy: 

Table 3 provides an overview of the accuracy metrics for automatic segmentation. Overall, the 

automatic segmentation showed a DSC of 98.4% and a RMS of 0.21 mm in comparison to the ground 

truth, implying that the 3D volumes and models, along with the surfaces, were closely matched 

between them. (Fig. 4). 
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The comparison between automatic and refined segmentations showed a DSC of 99.6% and a RMS 

of 0.21 mm indicating perfect overlap between them. The minimal difference meant that minor 

refinements were needed.  

Table 3. Accuracy assessment of automatic segmentation. 

DSC dice similarity coefficient, IoU intersection over union, HD hausdorff distance, RMS root 

mean square, SD standard deviation, Min minimal value, Max maximal value. 

 

Metric Descriptive analysis Automatic vs ground truth Automatic vs refined  
DSC Mean 

SD 

Min 

Max 

0.984 

0.004 

0.962 

0.991 

0.996 

0.004 

0.983 

0.999 

IoU Mean 

SD 

Min 

Max 

0.968 

0.008 

0.926 

0.983 

0.992 

0.007 

0.967 

0.998 

95% HD 

(mm) 

Mean 

SD 

Min 

Max 

0.232 

0.059 

0.200 

0.447 

0.109 

0.115 

0 

0.283 

RMS (mm) Mean 

SD 

Min 

Max 

0.209 

0.072 

0.142 

0.445 

0.214 

0.123 

0.100 

0.372 

Figure 4. Overlap between automatic segmentation (yellow color) and ground truth (blue 

color) in 3 orthogonal planes, RMS in mm between STL surfaces illustrated with a color map. 
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3.3 Consistency:  

Table 4 shows the metrics for intra- and inter-observer reliability with a DSC of 98.4% and 99.6%, 

respectively. For the CNN model test-retest reliability, it had, by default, an identical match with a 

DSC value of 100%. 

 

Table 4. Mean and standard deviation for reliability assessment.  

 

Metric Descriptive 

analysis 

Intra-observer Inter-observer CNN model  

test-retest 

DSC Mean 

SD 

Min 

Max 

0.984 

0.005 

0.974 

0.991 

0.996 

0.003 

0.987 

1 

1 

 

 

 

IoU Mean 

SD 

Min 

Max 

0.969 

0.008 

0.949 

0.982 

0.993 

0.006 

0.974 

1 

1 

 

 

 

95% 

HD 

(mm) 

Mean 

SD 

Min 

Max 

0.200 

0.021 

0.100 

0.321 

0.113 

0.121 

0 

0.346 

0 

 

 

 

RMS 

(mm) 

Mean 

SD 

Min 

Max 

0.155 

0.029 

0.100 

0.180 

0.113 

0.069 

0.010 

0.250 

0 

 

 

 

STL 

map 
  

 

 

 

DSC dice similarity coefficient, IoU intersection over union, HD hausdorff distance, RMS root 

mean square, SD standard deviation, Min minimal value, Max maximal value. 
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4. Discussion 

 
CBCT imaging has been widely employed in the field of oral and maxillofacial radiology for the 

visualization of orofacial structures, pre-surgical planning, and follow-up assessment11-13. It allows 

for a 3D evaluation that is crucial for an accurate diagnosis and management of certain pathologies 

affecting the maxillofacial complex. Volumetric (3D) assessment of the maxillary sinus not only 

enhances the diagnostic process but also permits the creation of reconstructed virtual models for 

presurgical planning purposes, including implant placement, sinus floor elevation, removal of 

(impacted) posterior teeth and/or root remnants, and reconstructive and orthognathic surgical 

procedures. In this sense, an accurate segmentation of the sinus cavity is an essential step. 

Manual segmentation is not a feasible task in a daily clinical practice since it is a time-consuming 

task and requires high operator experience. Semi-automatic segmentation techniques still require 

operator intervention for manual threshold selection. Additionally, the manual adjustments of 

segmented structures also require a considerable amount of time and may induce operator-based 

errors31. For overcoming the above-mentioned limitations and to provide a reproducible and 

consistent technique, the present study aimed to develop and validate an automated maxillary sinus 

segmentation methodology on CBCT images using a CNN-based model. 

The model in the current study was trained using data acquired by 2 CBCT devices (NewTom VGi 

evo and 3D Accuitomo 170) with different scanning parameters. Furthermore, images both with and 

without metal artifacts were included. A comparison was performed between the CBCT devices  

using the CNN model versus the ground truth, and no significant differences were observed. Both 

devices showed a high DSC value of 98.37% (NewTom VGi evo) and 98.43% (3D Accuitomo 170). 

Hence, the whole dataset was treated as one sample. 

When comparing the performance of the automatic versus the semi-automatic technique, the CNN-

model showed remarkable results in relation to time, accuracy, and consistency. The automatic 

segmentation was approximately 149 times faster (24.4 seconds) than the semi-automatic approach 

(60.8 minutes). When considering all the evaluation metrics, the CNN model showed a high similarity 

to the ground truth (see Table 3). 

Based on the proposed classification for the clinical evaluation of automatic segmentation, almost 

70% of the testing set was classified as perfect segmentation (class A), with no refinements required. 

For cases classified as B or C, refinements were mainly associated with cases having mucosal 

thickening. No deficient or negative predictions were present. Moreover, the small difference between 

automatic and refined segmentations (see Table 3) suggested that minimal refinements were needed.  
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The inter-observer reliability for the refined segmentation showed a DSC of 99.6%, which implied 

consistency amongst observers. The models’ performance was also 100% consistent during repeated 

segmentation of the same case, which is a great advantage to overcome human variability. As human 

performance will always be variable each time a segmentation is performed. Additionally, the 

developed model was fully automatic without the need for any human intervention, which also 

overcomes the issues of threshold leveling and grey scale variability.   

To date, few researchers32-34 have investigated maxillary sinus segmentation from CBCT datasets 

with different study designs. Bui et al.32 investigated an automatic segmentation technique of the 

paranasal sinuses and the nasal cavity from 10 CBCT images. They applied a multi-step level of 

coarse to fine active contour modelling and reported a dice of 95.7% in comparison to manual 

segmentation by considering experts as a ground truth. Neelapu et al.33 developed a knowledge-based 

algorithm for automatically segmenting the maxillary sinus from 15 CBCT imaging scans. The 

authors compared five segmentation techniques following automatic contour initialization and 

reported a dice ranging between 80-90% for all the segmentation methods. Ham et al.34 proposed an 

automatic maxillary sinus segmentation technique using one 3D U-Net and found a DSC score of 

92.8%. Even though a comparison with the aforementioned studies was difficult due to the variability 

in CBCT devices, scanning protocols, and study design, the currently proposed CNN model in the 

current study showed better results considering the metrics evaluated. Furthermore, the time needed 

for each segmentation method was clearly stated, and the sample size was justified, which have been 

rarely reported in previous studies. Recent studies35,36 have reported on automatic segmentation of 

sinus mucosal thickening and pathological lesions, yet this was not the focus of our study. 

The limitations of this study were similar to the already present challenges of artificial intelligence in 

dentistry21,37. Firstly, a lack of data heterogeneity and model generalizability exists, which could be 

solved by incorporating data from different CBCT devices having variable scanning parameters. 

Secondly, the online platform only allowed visualization and export of the automatic segmentation, 

and third-party software was required for performing the refinements. Recently, some editing tools 

have been added to the platform, and additional features will be added soon to overcome this issue. 

Finally, the CNN model enabled to extract the normal clear sinus and separate the bony borders in 

cases with sinus thickening, however, it cannot delineate the soft tissue. Future work will focus on 

the pathological conditions of the maxillary sinus.  
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5. Conclusions  

A 3D U-Net architecture CNN model was developed and validated for automatic segmentation and 

3D virtual model creation of the maxillary sinus from CBCT imaging. Owing to its promising 

performance in relation to time, accuracy, and consistency, it can represent a solid base for future 

studies by incorporation of pathological conditions. An additional benefit of the model is its 

deployment to an online web-based user-interactive platform, which could facilitate its application in 

clinical practice. 
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Abstract 

Objective 

To qualitatively and quantitatively assess the integrated segmentation of three convolutional neural 

network (CNN) models for the creation of a MVP from cone-beam computed tomography (CBCT) 

images. 

Materials and methods 

A dataset of 40 CBCT scans acquired with different scanning parameters was selected. Three 

previously validated individual CNN models were integrated to achieve a combined segmentation of 

the maxillary complex, maxillary sinuses, and upper dentition. Two experts performed a qualitative 

assessment, scoring-integrated segmentations from 0 to 10 based on the number of required 

refinements. Furthermore, experts executed refinements, allowing performance comparison between 

integrated automated segmentation (AS) and refined segmentation (RS) models. Inter-observer 

consistency of the refinements and the time needed to create a full resolution automatic segmentation 

were calculated. 

Results 

From the dataset, 85% scored 7–10, and 15% were within 3–6. The average time required for 

automated segmentation was 1.7 min. Performance metrics indicated an excellent overlap between 

automatic and refined segmentation with a dice similarity coefficient (DSC) of 99.3%. High inter-

observer consistency of refinements was observed, with a 95% Hausdorff distance (HD) of 0.045 

mm. 

Conclusion 

The integrated CNN models proved to be fast, accurate, and consistent, along with strong 

interobserver consistency in creating the MVP. 

Clinical relevance 

The automated segmentation of these structures simultaneously could act as a valuable tool in clinical 

orthodontics, implant rehabilitation, and any oral or maxillofacial surgical procedures, where 

visualization of MVP and its relationship with surrounding structures is a necessity for reaching an 

accurate diagnosis and patient-specific treatment planning. 

 

Keywords: Computer simulation, Three-dimensional image, Artificial intelligence, Computational 

neural networks, Cone-beam computed tomography, Jaw bone, Tooth. 
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1. Introduction 

One of the recent trends for diagnostics and pre-surgical planning in orthodontics, orthognathic 

surgery, and oral implant placement has been the introduction of simplified digital workflows1. The 

solid basis of such workflows can often be accomplished by 3D imaging, mainly cone-beam 

computed tomography (CBCT), which offers volumetric anatomical data of orofacial structures.  

Segmentation of the imaging data acquired from CBCT is essential for generating 3D models of 

patient-specific anatomical structures, which is a prerequisite for virtual treatment planning and 3D 

manufacturing1. However, current segmentation techniques, either manual or semi-automatic, are 

time-consuming, suffer from human variability, and are hampered by metal and motion artifacts2. 

Besides, segmentation of CBCT images requires more time than traditional multi-slice computed 

tomography (MSCT), as MSCT images have a superior contrast resolution and lower noise, which 

facilitate achieving a time-efficient segmentation2–4. However, CBCT acts as the modality of choice 

in oral healthcare, considering its low cost, relatively lower dose, and increased accessibility2, 5.  

Considering these limitations of CBCT imaging in relation to segmentation, there is a need for 

automation of the current digital workflows through the application of artificial intelligence (AI)-

based techniques. Recently, convolutional neural network (CNN), a class of artificial neural 

networks, has dominated the field of medical image analysis, as it is specialized for processing data 

with defined, grid-like topology, such as 2D and 3D images6, 7. CNNs have the ability to outperform 

standard image processing algorithms with high computational speed and correlate with other data, 

such as clinical information or response to therapy. This provides an improvement in the quality of 

image processing and helps clinicians to extract and analyze relevant information in a concise format7.  

So far, the authors of several studies have focused on the segmentation of individual 

craniomaxillofacial anatomical structures using CNN models8–11. However, no evidence exists about 

the integration of these multiple anatomical structures as a single unit. A combination of AI models 

specialized in segmenting different structures with variable densities simultaneously could pave the 

way towards the creation of a virtual patient with high performance in a time-efficient approach. This 

virtual patient could be applied for the digital virtual planning of several treatment procedures, not 

only in general dentistry but also in maxillofacial surgery, Ear, Nose and Throat (ENT), neurosurgery, 

and ophthalmology. Therefore, we aimed to assess the qualitative and quantitative performance of 

integrated CNN models of three previously validated individual networks for the creation of a 

segmented MVP consisting of the maxillary skeletal complex, maxillary sinuses, and teeth from 

CBCT images8, 12, 13. We hypothesized that the three integrated CNN models would reveal a similar 

performance as the individuals’ ones, along with a strong interobserver agreement in terms of time-

efficiency and consistency for creating a segmented MVP. 
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2. Materials and Methods 

 

This study was approved by the Research Ethics Committee of the University Hospitals of Leuven 

(reference number: S65708) and conducted in compliance with the World Medical Association 

Declaration of Helsinki on medical research. Patient-specific information was anonymized. 

2.1 Dataset 

The sample size was calculated based on previous comparable studies using a priori power analysis 

in G* power 3.1, with a power of 80% and a significance level of 5% 9, 11. In this way, a total dataset 

of 40 scans from two devices (20 Accuitomo 3D; 20 Newtom VGi evo) was selected, consisting of 

560 teeth, 80 sinuses, and 40 maxillofacial complexes acquired with different scanning parameters 

(Table 1). Inclusion criteria were scans with permanent dentition, including teeth with coronal and/or 

root fillings. Patients with a history of maxillofacial trauma, orthognathic and maxillofacial 

reconstructive surgery, syndromic or degenerative diseases were excluded. Post-orthognathic surgery 

patients with mini-plates and screws and patients with presence of dental implants and missing teeth 

in proximity to the sinus floor were also excluded.  

 All CBCT images were saved in Digital Imaging and Communication in Medicine (DICOM) format 

and uploaded to an online cloud-based platform called “Virtual Patient Creator” (creator.relu.eu, 

version December 2021, Relu BV, Leuven, Belgium), which allowed combined automatic 

segmentation of the maxillary complex, maxillary sinuses, and teeth, referred to as MVP.  

 

 

Table 1. CBCT scanning parameters of the sample. 

 

 kV mA Voxel size (mm) Field of view (cm) 

Newtom VGi evo (Cefla, 

Imola, Italy) 

110 3-8 0.2;0.25;0.3 24X19; 16X16; 12X8; 10X10 

3D Accuitomo 170 (J. 

Morita, Kyoto, Japan) 

90 5 0.25 17X12; 14X10; 10X10; 8X8 

 

kVp: kilovoltage peak; mA: milliampere. 
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2.2 Qualitative assessment 

Two dentomaxillofacial radiologists (FNR and NM) clinically evaluated the automatic segmentation 

of the integrated structures by visually observing their corresponding colors on orthogonal planes of 

the CBCT images (Figure 1). The three individual CNN models of the maxillary complex, maxillary 

sinuses, and teeth have been previously validated, where they proved to be highly accurate, requiring 

only minor refinements (slight over or under segmentation in each structure) (Figure 2).  Hence, a 

score from 0-10 was given for each segmentation based on the number of required minor refinements, 

where 0 represented ten refinements or more, 1 represented 9 refinements, 2 represented 8 

refinements, and successively up to 10 that referred to a perfect segmentation without the need for 

any refinements.  Inter-observer agreement was assessed for the scoring between the two observers. 

Additionally, needed refinements were performed for assessing the performance of the integrated 

models in comparison to the refined ones and assessing the consistency between observers. 

 

 

 

 

 

 

 

 

 

Fig.1 3D views and their respective colored segmentations on CBCT slices on Virtual Patient Creator 

(creator.relu.eu, Relu BV, Version December 2021): a) all structures combined showing the maxillary virtual 

patient, b) maxillofacial complex, c) maxillary sinuses, and d) upper dentition. 

2.3 Smart correction tools 

Following visual assessment, both observers performed the required refinements using the newly 

developed tools on the virtual patient creator platform: normal and smart brushes, contour, and 

livewire tools. The normal brush is a simple cylindrical brush which is used for adding brush strokes 

to refine small inadequacies between multiple image slices. The smart brush uses voxel intensities to 

group them by analysing the voxel's intensity below the cursor and selecting all voxels at a certain 

depth that have intensities within the selected voxel's tolerance range. Both tools are unidirectional, 

causing only the slices above or below to be changed. Hence, there was no issue of overwriting slices 

that had already been corrected. 

a b c
 

d
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The contour tool automatically interpolates the inter-slice region between upper and lower selected 

contours; however, if drastically different topology is observed between slices, then there is a risk of 

inaccurate interpolation, which could impact the final 3D shape. The livewire tool is an intelligent 

version of the contour tool, whose main principle of inter-slice interpolation remains the same. 

However, it connects the added points in a path that automatically follows the grey values of the 

image. Consequently, allowing the user to outline contours more quickly with a fewer number of 

points compared to a contour tool. Tutorials on how to use these tools are available as supplementary 

material (online resource 1-4).   

2.4 Quantitative assessment 

2.4.1 Timing 

The time required to have a full resolution automatic segmentation (AS) was measured directly by an 

automated algorithm. As for the refined segmentation (RS), it was calculated by summing up the time 

required for automatic segmentation and refinements. Finally, the average time for each segmentation 

technique was calculated. 

2.4.2 Automatic versus refined segmentations  

The automatic segmentation was compared to the manual refined segmentation, and the metrics used 

to assess its similarity included the dice similarity coefficient (DSC), 95% Hausdorff distance (HD), 

and root mean square (RMS) (Table 2). The performance of the AI models for MVP segmentation 

was calculated using the following expression, where x is the comparison metric of interest (e.g., 

DSC) between automatic and refined segmentation.  

 

𝜒𝜒 𝑐𝑐𝐻𝐻𝑐𝑐𝑏𝑏𝑐𝑐𝑛𝑛𝑐𝑐𝐻𝐻 =  
〈𝑥𝑥𝑐𝑐𝑎𝑎𝑥𝑥𝑐𝑐𝑚𝑚𝑚𝑚𝐻𝐻𝐻𝐻𝑎𝑎𝑐𝑐𝑐𝑐𝑎𝑎𝑚𝑚 𝑐𝑐𝐻𝐻𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑥𝑥〉 +  〈𝑥𝑥𝑐𝑐𝑎𝑎𝑥𝑥𝑐𝑐𝑚𝑚𝑚𝑚𝑎𝑎𝐻𝐻𝑦𝑦 𝐻𝐻𝑐𝑐𝑛𝑛𝐻𝐻𝐻𝐻𝑐𝑐𝐻𝐻〉  +  〈𝑥𝑥𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝐻𝐻 𝐻𝐻𝑐𝑐𝑛𝑛𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐𝐻𝐻𝑛𝑛〉

3
 

 

The dentition metric was defined as the average over all individual tooth types: 

𝜒𝜒 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝐻𝐻 𝐻𝐻𝑐𝑐𝑛𝑛𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐𝐻𝐻𝑛𝑛 =  
〈𝑥𝑥𝑑𝑑𝐻𝐻𝐻𝐻𝑑𝑑ℎ 11〉 + 〈𝑥𝑥𝑑𝑑𝐻𝐻𝐻𝐻𝑑𝑑ℎ 12〉 + ⋯

16
 

 

2.4.3 Consistency of refined segmentations 

The three CNN models have already proven to be 100% consistent at an individual level; hence, AI 

consistency was not further investigated. The interobserver consistency of refined segmentations was 

assessed by overlapping the DICOM and resultant STL files of the segmentations performed by each 

observer. Thereafter, corresponding evaluation metrics were calculated. 
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Table 2. Overview table of validation metrics used in the quantitative assessment. 

 

Metrics Definition Formula 

DSC This ratio represents how similar 
the segmented region is to the 
ground truth. 

𝐷𝐷𝐷𝐷𝐷𝐷(𝐴𝐴,𝐵𝐵)  =  
2|𝐴𝐴 ∩ 𝐵𝐵|
|𝐴𝐴| + |𝐵𝐵| =   

2𝑇𝑇𝑇𝑇
2𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

95% HD Indicator of the maximum 
difference between the limits of 
the automatic segmentation and 
the ground truth. 

95% HD =𝑇𝑇95(min
𝑎𝑎𝑎𝑎𝑎𝑎

�|𝐵𝐵 − 𝐴𝐴|�
2
∪ min

𝑏𝑏𝑎𝑎𝐵𝐵
�|𝐴𝐴 − 𝐵𝐵|�

2
) 

 

RMS Indicator of the imperfection of 
the fit between the STLs of the 
surface of interest and ground 
truth in mm. 

𝑅𝑅𝑅𝑅𝐷𝐷 (𝑑𝑑) = �1
𝑛𝑛

 (𝑑𝑑12 +  𝑑𝑑22 + ⋯+  𝑑𝑑𝑛𝑛2) 

 

DSC Dice Similarity Coefficient, 95%HD 95% Hausdorff distance, RMS root mean square, A 

volumetric data of observer 1, B volumetric data of observer 2, TP true positives, TN true negatives, 

FP false positives, FN false negatives, P95 percentile 95. 

 

2.5 Statistical analysis 

Data were analysed with IBM SPSS version 28.0.1.0 software (Armonk, NY). The weighted Kappa 

test (95% CI) was performed for the inter-observer agreement of the qualitative assessment. For 

quantitative data, the mean value and standard deviation of each evaluation metric were calculated.  

 

3. Results 

 

3.1 Qualitative assessment 

Based on the visual assessment, there was no overlap between the three structures. From the entire 

dataset, 85% showed a score of 7 or more by both observers, and 15% were within the range of 3-6.  

Furthermore, there were no cases with scores of 0-2 (Figure 2).  In total, 40 scans required minor 

corrections, mainly due to mucosal thickening in the sinus, closed foramina and canals, small bone 

discontinuities in the palate and maxilla, and bone over-segmentation of zygomaticotemporal sutures 

(Table 3). Figure 3 illustrates some examples of the regions requiring refinements. The weighted 

Kappa test showed strong inter-observer agreement (K=0.832, 95% CI [0.704;0.960]) based on 

Landis and Koch´s classification14.  
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Fig. 2 Score frequency based on the number of corrections needed given by two observers (n = 80). 

 

 

Table 3. Types of corrections required according to the structure with their description. 

 

 

 

 

Structure refined Correction type Description 

Upper dentition Under segmentation Small missing parts in the tooth contour 

Over segmentation Not found 

Maxillary sinuses Under segmentation Mucosal thickening, and air voids 

Over segmentation Overextension in ethmoidal air sinus 

Maxillofacial 

complex 

 

 
 

Under segmentation Bone discontinuities in medial wall and back of 

maxilla, and in the palate 

Over segmentation Closed infraorbital and palatine foramina, nasopalatine 

canal, and overextension of zygomaticotemporal suture 
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Fig. 3 3D models and axial sections of CBCT scans illustrating the necessary refinements most often 

detected in qualitative analysis. a) Mucosal thickening in the upper cortical of the right maxillary 

sinus. b) MVP in a view showing bone discontinuity around palatine foramina. c) Closed right 

infraorbital foramen in a lateral view of the MVP. 

 

3.2 Quantitative assessment  

 

The average time for the automated segmentation of 40 cases was 1.7 minutes, ranging  from 1.1 to 

2.4 minutes. The average time required for refinements by the first and second observers was 3.4 

minutes ( 1.2 to 15 minutes) and 2.5 minutes (1.0 to 11 minutes), respectively.  

The performance metrics (Table 4) indicated excellent overlap between automatic and refined 

segmentation, with a DSC of 99.3% for both observers, implying that minimal refinements were 

required. The RMS value was 0.289 mm and 0.286 mm, and the 95% HD was 0.210 mm and 0.228 

mm for each observer, respectively.  

a 

b 

c 
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Interobserver consistency of refinements (Table 4) showed a high DSC  of  99.8%. A close to zero 

95% HD of 0.045 was detected with a low RMS value of 0.053. Additionally, the STL overlap 

comparison map also observed a similar pattern. Hence, suggesting a substantial agreement between 

both observers.  

 

Table 4. Evaluation metrics for comparison between automatic and refined segmentations. 

Metric Descriptive 

analysis 

AS vs RS 

(Observer 1) 

AS vs RS 

(Observer 2) 

Inter-observer 

consistency 

DSC Mean 

SD 

Min 

Max 

 0.993 

0.021 

0.976 

0.997 

 0.993 

0.023 

0.976 

0.999 

 0.998 

0.003 

0.996 

0.999 

95%HD (mm) Mean 

SD 

Min 

Max 

 0.210 

1.004 

0.000 

1.004 

 0.228 

1.006 

0.000 

1.006 

 0.045 

0.067 

0.000 

0.067 

RMS (mm) Mean 

SD 

Min 

Max 

0.289  

0.462 

0.167 

0.629 

0.286  

0.467 

0.167 

0.634 

 0.053 

0.099 

0.000 

0.099 

AS: Automatic segmentation, RS: Refined segmentation, SD: Standard deviation, DSC: Dice 

Similarity Coefficient, 95%HD: Hausdorff Distance, and RMS: root mean square. 

 

4. Discussion 

 

An accurate 3D segmentation of orofacial structures is the first essential step in most digital dental 

workflows. It is crucial for precise delineation and outlining of normal anatomy, variations, 

differentiation from accompanied pathological lesions and volumetric estimation of anatomical 

structures. If segmentation of multiple anatomical structures is performed simultaneously, it provides 

a clinician with a complete picture and a focused approach towards studying the relationship with the 
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surrounding structures. Therefore, the present study investigated the performance of integrated CNN 

models for creating the MVP consisting of combined automatic segmentation of the maxillary 

complex, sinus, and teeth as a single unit.  

For qualitative assessment, since only minor corrections were needed, the quality of integration was 

assessed based on the number of refinements and the required time. The results showed a strong 

agreement between both observers. A score equal to 7 or more (85% of the dataset) was considered 

a high-quality segmentation, while a score ranging from 3-6 (15% of the dataset) an above-average 

quality. Segmentations with a Table 3 illustrates the types of required refinements per segmented 

structure. According to previous validation studies ' classification12, 13, minor refinements have no or 

slight clinical relevance, and the present qualitative analysis assumes that this clinical impact depends 

on the number of minor refinements needed.  In daily practice, the clinical relevance of such 

refinements might differ depending on the task at hand, such as visualization, diagnosis, treatment 

planning, and patient education. Moreover, each type of refinement might be more relevant in a 

specific clinical specialty compared to another one. For instance, mucosal sinus thickness is more 

relevant for treatment planning in oral and maxillofacial surgical procedures involving maxillary 

sinus floor elevation15 compared to a routine dental examination or patient education. 

The quantitative assessment revealed that the sum of the mean time required for automatic MVP 

segmentation (1.7 minutes) was slightly higher compared to the sum of the previously documented 

timing for each structure segmentation, which totaled 1.3 minutes (maxillofacial complex: 39.1, 

maxillary sinus: 24.4, all teeth: 13.7 seconds)8, 12, 13. This minimal difference could be attributed to 

some technical variabilities, such as nonuser active processes, which impact the segmentation time 

even if the same AI tool is run several times, making it a challenge to keep the time constant16. 

Another reason could be the large field of view (FOV) of the included sample, which could have 

increased the processing time. The previous studies used fewer testing samples with large FOVs 

because they covered only one region of interest. 

We did not investigate the clinical accuracy of automated segmentation, which has previously been 

reported to have a high DSC score (maxillary complex: 92.6%, maxillary sinus: 98.4%, teeth: 90%), 

when compared to the reference ground truth generated by skilled human operators using a manual 

or semi-automatic approach. Rather, the relevant performance of the combined structural 

segmentation was compared to the manually refined one. The findings showed no change in 

performance following post-integration. A DSC score of 99.3% was observed compared to refined 

segmentation for both observers. Hence, implying high segmentation quality even for scans requiring 

many refinements.  
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Additionally, the interobserver consistency showed almost perfect overlap with a DSC of 99.8%, 

indicating that the integrated model could provide an automated ground that increases consistency 

between observers, overcoming high observer variability in other segmentation techniques. 

The presented CNN model overcame the issue of manual threshold selection required with semi-

automatic approaches. Moreover, the main benefit of the model is the simultaneous segmentation of 

anatomical structures with different densities using a single platform, as shown in the coronal slice 

of Figure 1a. This type of combined segmentation is not possible with the available semi-automatic 

segmentation software programs, where each structure has a different threshold, requiring manual 

adjustment separately by the operator17. Clinically, this integrated segmentation could be a valuable 

tool in clinical orthodontics and maxillofacial surgical procedures, such as implant planning, bone 

grafting, and orthognathic and reconstructive surgery18–21, where visualization of the MVP and its 

relationship with surrounding structures is a necessity for reaching an accurate diagnosis and patient-

specific treatment planning.  

An additional advantage of the proposed approach was that no third-party software was required to 

refine the automated segmentations, which was not the case in the previous individual CNN model-

based validation studies. As newly developed tools have been employed on the platform, which also 

let the clinicians directly refine the segmentations. However, lack of data heterogeneity remains a 

limitation, and there is a need to incorporate data from other CBCT devices with varying scanning 

parameters to justify the generalizability of the tool. In the near future, we plan to integrate other 

validated individual anatomical regions, such as the mandible, inferior alveolar canal, and pharyngeal 

airway9–11. It is also expected to expand the tool’s ability by integrating data from intra-oral scanners 

and facial scanners for the creation of a complete virtual patient, which could enhance the delivery of 

personalized dental care22. Furthermore, additional  CBCT scans from various institutions, CBCT 

scanner brands, as well as the variability of patient anatomy and pathology, should be integrated in 

the near future to increase the generalizability further. The application of AI tools and personalized 

data in clinical and research fields could support positive clinical protocols changes, help create 

predictive population models23, and act as a visual educational tool for both clinicians and patients. 

5. Conclusion  

The three integrated CNN models proved to be fast and accurate for simultaneous segmentation of 

maxillary anatomical structures with different densities. Both the qualitative and the quantitative 

assessments revealed strong interobserver consistency. The integrated MVP could act as a feasible 

tool for visualization, diagnostics, and treatment planning in daily clinical practice.  
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Abstract 

Purpose 

Quantification of skeletal symmetry in a healthy population could have a strong impact on 

reconstructive surgical procedures where mirroring of the contralateral healthy side acts as a clinical 

reference for the restoration of unilateral defects. Hence, the aim of this study was to three-

dimensionally assess the symmetry of the skeletal midfacial complex in skeletal class I patients. 

Methods 

A sample of 100 cone beam computed tomography (CBCT) scans (50 males, 50 females; age range: 

19-40 years) was recruited. Automated segmentation of the skeletal midfacial complex was 

performed to create a 3D virtual model using a convolutional neural network (CNN)-based 

segmentation tool. Thereafter, the segmented model was mirrored and registered to quantify skeletal 

symmetry using a color-coded conformance mapping based on a surface part-comparison analysis. 

Results 

Overall, the mean and root mean square (RMS) differences between complete true and mirrored 

models were 0.14±0.12mm and 0.87±0.21mm, respectively. Female patients had a significantly more 

symmetrical midfacial complex (mean difference: 0.11±0.1mm, RMS: 0.81±0.17mm) compared to 

male patients (mean difference: 0.16±0.13mm, RMS: 0.94±0.23mm). No significant difference 

existed between the left and right sides, irrespective of the patient’s gender. 

Conclusion 

The comparison between the true and mirrored complete and left/right split midfacial complex 

showed symmetry within a clinically acceptable range of 1 mm, which justifies the applicability of 

using the mirroring technique. The presented data could act as a reference guide for surgeons during 

the planning of reconstructive surgical procedures and outcome assessment at follow-up.   

Keywords: midfacial complex- symmetry- automatic segmentation- CBCT- mirroring reconstructive 

surgeries- virtual surgical planning.  
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1. Introduction 
 
 
The midfacial complex refers to the middle portion of the osseous facial architecture, which 

significantly contributes towards defining the facial form. It incorporates the maxilla, nasal skeleton, 

orbital rim, and zygoma (including the entire length of zygomatic arches), which are bounded by 

frontomaxillary, frontozygomatic, and frontonasal suture lines. The clinical relevance of the midfacial 

complex cannot be ignored, as it is one of the most commonly fractured regions requiring surgical 

correction, accounting for approximately 60% of all maxillofacial fractures1-3. Furthermore, midfacial 

complex deformity correction is often performed through reconstructive surgery for improving facial 

esthetics and functionality. One of the main required outcomes of these surgical interventions is the 

restoration of facial symmetry following functional recovery.    

With the advent of 3D CT/CBCT imaging, surface-based skeletal symmetry evaluation techniques 

have been widely applied for diagnostics, reconstructing symmetrical facial skeletal structures, and 

outcome assessment4-7. These 3D methodologies have replaced the conventional landmark-based 

assessment techniques8,9 which make the morphological assessment problematic owing to a high 

degree of human error, observer variability, and high time consumption10. In addition, the main steps 

involved in the 3D symmetry evaluation and virtual surgical planning for achieving a symmetrical 

skeletal outcome in patients with defects consist of surface segmentation followed by mirroring and 

superimposition of the normal region onto the defected side11-13. These steps have been employed for 

quantifying the symmetry of orbital14,15 and zygomatic bones16,17 in a healthy population for the 

purpose of providing a reference benchmark which facilitates the surgical reconstruction of skeletal 

defects.  

The most vital step for symmetry assessment involves segmentation or skeletal surface reconstruction 

for the creation of a virtual 3D model from CT/CBCT datasets. Any flaw in this step would contribute 

towards the accumulation of errors in the later steps. Studies assessing the symmetry of skeletal 

structures rely mainly on semi-automatic segmentation software programs, which are prone to certain 

limitations, such as threshold selection, observer variability, and over- or under-segmentation 

requiring time-consuming manual intervention18-20, which in turn could lead to an inaccurate 

symmetry assessment. To overcome these limitations, convolutional neural network (CNN)-based 

deep learning algorithms have been applied for automated segmentation of dentomaxillofacial 

structures from CBCT images and have shown promising results21-23. However, these artificial 

intelligence-based models still need to be applied for assessing the symmetry of skeletal structures.  

To our knowledge limited evidence exists quantifying the midfacial complex symmetry in a healthy 

population group. Furthermore, no protocol exists for quantifying skeletal symmetry with the 
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application of CNN-based segmentation approaches10. Therefore, the following study was conducted 

to quantify the symmetry of the midfacial complex on CBCT images of skeletal class I patients using 

a recently validated CNN-based automated segmentation tool24, which could act as a reference guide 

for mirroring reconstructive surgical procedures in patients with skeletal defects and asymmetry. The 

hypothesis behind this work was that the automation of the segmentation step and the provision of 

midfacial complex symmetry data would enhance the precision and time-efficiency of the symmetry 

evaluation process for further clinical applicability in patients requiring mirroring for reconstructive 

surgery.  

 

2. Methods 

This study was conducted in compliance with the World Medical Association Declaration of Helsinki 

on medical research. Ethical approval was obtained from the Ethical Review Board of the University 

Hospitals of Leuven (reference number: S57587).  

2.1 Data collection 

The sample size was calculated based on previous comparable studies11,14 using a priori power 

analysis in G*power software (version 3.1.9.4, University of Dusseldorf, Dusseldorf, Germany)  to 

test the difference between two sample means at a power of 80%, an effect size of d = 0.57, and 0.05 

level of significance.  

A total sample of 100 CBCT scans (50 males and 50 females) were recruited during the period 2018–

2020, from the radiological database of UZ Leuven Hospital, Leuven, Belgium. The scans were 

acquired with NewTom VGi evo CBCT device (NewTom, Verona, Italy) using a standardized 

scanning protocol (field of view: 24x19 cm, voxel size: 0.3 mm). The inclusion criteria were adult 

healthy patients aged 19-40 years with skeletal class I who underwent CBCT scanning for justified 

dental or maxillofacial indications. Patients with a history of maxillofacial trauma, odontological 

surgical interventions, reconstructive surgery, existing pathology, and skeletal deformity were 

excluded. All scans were saved in Digital Imaging and Communication in Medicine (DICOM) format 

for further processing.  

2.2 Symmetry assessment protocol 

2.2.1 Automatic segmentation 

The segmentation of the skeletal midfacial complex was performed using a previously developed and 

validated CNN-based online cloud tool24 known as the ‘Virtual Patient Creator’ (ReLu BV, Leuven, 

Belgium, Version October 2021).  
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The DICOM images were uploaded to the tool, which allowed automatic segmentation and generation 

of a virtual 3D model in Standard Tessellation Language (STL) file format. The segmented midfacial 

complex involved the palatine, maxillary, zygomatic, nasal, and lacrimal bones. The complex was 

bounded superiorly by replicating a Le Fort III fracture line which passed through the frontonasal 

suture, frontomaxillary suture, orbital wall, and frontozygomatic suture25,26. Laterally and 

posteroinferiorly, it was limited till zygomaticotemporal and pterygomaxillary suture lines, 

respectively. Inferiorly, the complex extended up to the alveolar bone level. The teeth were 

automatically excluded from the segmented region as the CNN-based tool had been manually trained 

to specifically segment the skeletal complex and crop the dentition from the final segmentation 

output24 (Figure 1). 

Later, the STL files of the midfacial complex were imported into Mimics Innovation Suite (version 

23.0, Materialise N.V., Leuven, Belgium) to confirm the visual quality of the segmentation. Visual 

inspection of the segmentation was performed by assessing the boundaries of the segmented midfacial 

complex overlapped onto the coronal, axial, and sagittal orthogonal planes of the CBCT images. If 

any minor discrepancy existed within the final segmentation, it was corrected manually using the 3D 

tools tab.  

 

 
Figure 1. Automatic segmentation of midfacial complex: anterior, posterior, and side views 

(creator.relu.eu, ReLu BV, Version October 2021). 
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2.2.2 Mirroring and registration 

Mirroring and registration were applied to quantify both the complete and unilateral left/right 

midfacial complex skeletal symmetry. The reasoning for that was to estimate the range of normal 

symmetry, which could act as an intuitive guide during the preoperative surgical planning phase and 

for analyzing residual postoperative asymmetry depending on the type of midfacial reconstructive 

surgery, i.e., either complete midfacial complex reconstruction or in cases where the normal 

contralateral side acts as a reference. 

Firstly, the STL files of automated segmentation were imported into 3-matic software (version 15.0, 

Materialise N.V., Leuven, Belgium), where a mirrored model of the complete midfacial complex was 

created by a “mirror” command using an arbitrary midsagittal plane which was automatically 

determined by the software (Figure 2a). Thereafter, the mirrored model was registered onto the true 

model according to the least point-to-point distance between the two overlapped surfaces. This 

process was performed by applying global co-registration with enough iterations until the mean point-

to-point distance for all point pairs reached its least value without any visible spatial changes (Figure 

2b). The registration distance threshold was set at 10 mm for a gross overlap and was gradually 

changed up to 0.5 mm for fine tuning the final registration and maximizing the conformance.  

Thereafter, morphological symmetry between the true and mirrored models was assessed using a 

color-coded conformance mapping based on the part-comparison function. This allowed quantitative 

calculation of the difference between true and mirrored midfacial complexes, depending on the degree 

of conformity or variation between both sites. Figure 3 illustrates an example of a case showing color-

coded part comparison analysis of a complete midfacial complex symmetry. 

In addition, a mirror model of the left and right sides of the segmented complex was created using a 

midsagittal plane based on the following landmarks: the posterior nasal spine, the anterior nasal spine, 

and the nasion. This plane has been found to be the most appropriate for assessing bilateral 

craniomaxillofacial symmetry27,28. Each mirrored model was registered onto the opposing 

contralateral true model, i.e., the left mirrored model was registered onto the right true side, and vice 

versa, followed by registration and part-comparison as previously mentioned.  

The entire procedure, starting from segmentation till part-comparison was performed blindly by two 

independent experts. Both observers repeated the assessment twice at an interval of 1 week for 

calculating intra- and inter-observer error and reliability. 
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Figure 2. Mirroring and registration steps of complete midfacial complex. A. Mirroring of midfacial 
complex based on an arbitrary midsagittal plane, B. Global registration of original and mirrored 

models. 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

Figure 3. Color-coded part comparison analysis between complete true and mirrored midfacial 
complex. 

 
Note: Green color (zero value) corresponds to no difference between the true and mirrored 

overlapped models, deviation towards blue color (negative values) correspond to under-estimation 
of true model, deviation towards red color (positive values) correspond to over-estimation of true 

model. 
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2.3 Statistical analysis 

Data were analyzed using IBM SPSS Statistics for Windows, version 21.0 (IBM Corp., Armonk, NY, 

USA). The Shapiro–Wilk test was applied to assess the data for normal distribution and 

homoscedasticity was verified by conducting Levene’s test. The symmetry was presented as the mean 

and root mean square (RMS) difference between the true and mirrored models of the complete and 

unilateral midfacial complex. A t-test and two-way analysis of variance were applied for assessing 

the differences in symmetry of the complete and left/right split based on gender. The relative technical 

error of measurements (rTEM) was calculated for assessing the intra- and inter-observer error and 

classified into five categories (<1% = excellent, 1–3.9% =  very good, 4–6.9% = good, 7–9.9% = 

moderate, >10%= poor)29,30. Moreover, Intra-class Correlation Coefficient (ICC) was applied at a 

95% confidence interval for evaluating the inter- and intra-observer reliability (where <0.50 = poor 

reliability; 0.50–0.75 = moderate reliability; 0.75–0.90 = good reliability; >0.90 = excellent 

reliability)31. A p-value of <0.05 was considered as statistically significant.  

 

3. Results 

All data presented a normal distribution and exhibited homoscedasticity. The visual examination of 

the segmentations revealed that 20% of the automatic segmentations required manual corrections. 

However, the corrections were minor and clinically insignificant in nature. The rTEM for both intra- 

and inter-observer error ranged from good to excellent, with the least amount of error observed when 

mirroring a complete midfacial complex compared to split left/right sides. Moreover, inter- and intra-

observer reliability revealed an excellent ICC value (>0.99) for all parameters without any significant 

difference between observers (Table 1). 

 

Table 1: Intra and inter observer error and reliability of complete and unilateral left/right midfacial 
complex skeletal symmetry. 

 
 Complete true / 

mirrored 
Right true /left 

mirrored 
Left true /right 

mirrored 
Mean RMS Mean RMS Mean RMS 

Intra-
observer 

rTEM 1.4% 0.18% 1.4% 0.24% 1.5% 0.35% 

ICC 0.999 0.999 0.999 0.999 0.998 0.999 

Inter-
observer 

rTEM 1.8% 0.3% 5% 1.1% 6% 1.4% 

ICC 0.999 0.999 0.997 0.998 0.997 0.997 

 
RMS: root mean square, rTEM: relative technical error measurements, ICC: Intra-class Correlation 
Coefficient.  
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Table 2 describes the symmetry of the complete midfacial complex based on part comparison 

analysis. Overall, the mean and RMS difference between complete true and mirrored models were 

0.14±0.12mm and 0.87±0.21mm, respectively. Male patients showed a higher complete midfacial 

complex asymmetry (mean difference: 0.16±0.13mm, RMS: 0.94±0.23mm) compared to the female 

patients (mean difference: 0.11±0.1mm, RMS: 0.81±0.17mm). Moreover, a significant mean (p = 

0.034) and RMS difference (p = 0.002) existed based on the gender of patients, where female patients 

were found to be significantly more symmetrical compared to the male patients.  

Table 3 demonstrates  the overall and gender-based mean and RMS difference between the left/right 

true and mirrored sides. The comparison between the superimposed true right and mirrored left 

models showed similar values (mean: 0.13±0.11mm, RMS: 0.82±0.22mm) compared to the true left 

and mirrored right models (mean: 0.13±0.13mm, RMS: 0.82±0.21mm), with no significant mean (F 

= 0.158, p = 0.692) and RMS difference (F = 0.017, p = 0.896) existed between both sides. A 

significant difference existed between males and females either for the mean (F = 6.6, p = 0.011) or 

RMS value (F = 22.06, p = <0.001). Interaction between side and gender was negligible for both 

measurements (mean: F = 0.069, p = 0.794; RMS: F = 0.232, p = 0.631). 

 

Table 2: Mean and root mean square (RMS) difference between true and mirrored midfacial 
complex. 
 
 

Study population Mean distance (mm) RMS (mm) 

Total Mean 

SD 

Min 

Max 

0.14 

0.12 

0.002 

0.881 

0.87 

0.21 

0.56 

1.98 

Male Mean 

SD 

Min 

Max 

0.16 

0.13 

0.005 

0.881 

0.94 

0.23 

0.59 

1.98 

Female Mean 

SD 

Min 

Max 

0.11 

0.1 

0.002 

0.547 

0.81 

0.17 

0.56 

1.48 
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Table 3: Mean and root mean square (RMS) difference between true left/right and mirrored sides. 

 

Study population Mean right- 

left mirror  

(mm) 

Mean left- 

right mirror 

(mm) 

RMS right-

left mirror 

(mm) 

RMS left- 

right mirror 

(mm) 

Total Mean 

SD 

Min 

Max 

0.13 

0.11 

0.003 

0.872 

0.13 

0.13 

0.004 

0.902 

0.82 

0.22 

0.546 

2.08 

0.82 

0.21 

0.49 

1.87 

Male Mean 

SD 

Min 

Max 

0.15 

0.13 

0.034 

0.872 

0.16 

0.14 

0.014 

0.902 

0.89 

0.25 

0.609 

2.08 

0.88 

0.22 

0.561 

1.87 

Female Mean 

SD 

Min 

Max 

0.11 

0.07 

0.003 

0.349 

0.11 

0.12 

0.004 

0.62 

0.74 

0.15 

0.546 

1.27 

0.76 

0.19 

0.49 

1.43 

 

 

4. Discussion 

 

In a clinical practice, quantification of normal midfacial complex symmetry in a healthy population 

could have a strong impact on reconstructive surgical procedures where mirroring of the contralateral 

healthy part acts as a clinical reference for the restoration of unilateral defects. This quantification 

could provide a reference to the surgeons for achieving optimal treatment planning in terms of facial 

aesthetics and function and follow-up evaluation.  

At present, mirroring techniques for craniomaxillofacial reconstructive surgery are based on the 

assumption that both the left and right sides are symmetrical. However, evidence suggests that a 

normal acceptable range of skeletal asymmetry exists, referred to as “fluctuating asymmetry” 32,33. 

This range has been mostly defined for skeletal structures such as the mandible, zygomatic bone, 

zygomaticomaxillary complex, and orbital region. To our knowledge, no study exists assessing the 

symmetry of the midfacial complex in a healthy population group. Hence, the following study was 

conducted to three-dimensionally quantify the average natural variation of its symmetry.  
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Recently, various 3D workflows have been established for the restoration of unilateral skeletal defects 

and assessing symmetry15-17, 34. Although the mirroring and registration steps have been automated, 

the main limitation associated with these workflows has been the application of semi-automated 

skeletal segmentation tools, which might negatively impact the final expected outcome. Furthermore, 

the cortical bone of the midfacial complex is thin and fibrous in nature with a low bone mineral 

density, which makes segmentation challenging and prone to error and variability35,36.  Therefore, the 

current study applied a state-of-the-art CNN-based automated segmentation tool. At present, no 

completely automated workflow exists in the literature for mirroring reconstructive surgical 

procedures. The proposed tool not only allowed automatization of the 3D workflow for re-

establishing the contralateral midfacial complex, but it could also act as a viable alternative for 

assessing symmetry by providing a consistent and time-efficient segmentation. Furthermore, the 

symmetry was assessed based on the geometric morphometry of the whole bone surface instead of 

relying on specific landmarks and linear/angular measurements, which could also offer a more 

realistic approach towards quantifying the site and magnitude of symmetry10.  

A comparison with prior evidence was deemed difficult owing to the absence of studies evaluating 

the symmetry of the midfacial complex. Rather, the majority of studies focused towards the symmetry 

assessment of individual skeletal structures, such as the orbital bone14,15, zygomatic arch16,17, 

mandible37,38 and upper skull39,40. It is noteworthy that the assessment of midfacial complex symmetry 

as a whole is equally important as individual anatomical structures for defining facial form and 

function, especially in major reconstructive surgical procedures where the whole unilateral complex 

region might require mirroring for reconstruction.  

The findings of the present study showed that the overall asymmetry RMS value of the complete 

midfacial complex was comparable to that of zygomatic bone16,17 and orbital floor14,15. On the 

contrary, the mean difference was found to be smaller compared to that of the upper skull. Based on 

gender variability, the present study showed a significant difference based on the mean and RMS 

values. These gender-based findings were contradictory to Gibelli et al16 study, where the authors 

reported no significant asymmetry of zygomatic bone for both types of values. In contrast, our 

findings were consistent with Ho et al17 study, which reported significantly higher asymmetry in male 

patients. Previous studies also suggest that female skulls are more symmetrical compared to male 

skulls, which could also apply to the midfacial complex region. Furthermore, Hingsammer et al41 

reported a mean zygoma asymmetry of 1.6 mm, which was higher than the values obtained for the 

complex in the present study. This could be attributed to either the structural variability or the 

difference in methodology, where the authors relied on landmark-based linear measurements, which 

fail to provide the true 3D symmetry of an anatomical structure and are more prone to human error 
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and variability. In contrast, assessment of the entire skeletal structure using mirroring and part 

comparison provides more accurate and realistic information about symmetry.  

Our findings also suggested no significant difference between the left and right sides, which was 

consistent with the studies evaluating the upper skull and orbital floor. The presence of a slight 

fluctuating asymmetry justifies mirroring reconstructive techniques in cases with unilateral defects 

and also confirms that no precipitating random difference exists on either side, which might impact 

the final treatment plan42.  

The low magnitude of error and excellent observer reliability support the clinical applicability of the 

proposed methodology. The presented data suggested that the average amount of both complete and 

split midfacial complex asymmetry was within a clinically acceptable range of 1 mm, which signifies 

the rationale of using the contralateral unaffected side as an acceptable reference for performing 

unilateral reconstructive surgery of the midfacial complex in traumatic and oncologic patients.  

Although minimal differences existed based on the gender of the patient, female patients showed a 

significantly more symmetrical complete midfacial complex compared to male patients. Hence, 

implying that a surgeon should carefully examine any pre-existing asymmetry of the midfacial 

skeletal structures, especially in male patients, during the preoperative treatment planning phase. It 

should also be noted that the minimum and maximum values of asymmetry varied for each patient at 

an individual level. Thereby, a patient-specific or personalized approach should be applied for 

planning midfacial reconstructive surgery instead of relying on a traditional one-size-fits-all 

approach43.  

The main strengths of the study included the first-time reporting of the objective assessment of 

midfacial complex symmetry in a healthy population and the introduction of a reliable, accurate, and 

efficient segmentation tool which could further automatize the symmetry assessment task and 

overcome the negative impact of thresholding-based approaches. At the same instance, the study had 

certain limitations. Firstly, the amount of asymmetry associated with each individual anatomical 

structure was not evaluated, where one structure might influence the asymmetry more than the other; 

hence, requiring further studies to establish automated segmentation approaches of individual 

structures to increase the clinical feasibility of the approach. Secondly, the symmetry evaluation of 

the left versus right side was based on an operator-dependent landmark-based midsagittal plane. 

Although this plane has been documented to be clinically acceptable for assessing symmetry, there is 

still a need for further research to also automate this task to ensure an operator-free approach. 
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5. Conclusion 

The comparison between the true and mirrored complete and split midfacial complex showed 

differences within a clinically acceptable range of 1 mm, which justifies the applicability of the 

mirroring technique. These presented data could act as a reference for surgeons when evaluating 

asymmetry and guide the decision-making process for restoring midfacial defects. Furthermore, the 

proposed automated approach could act as a viable alternative for a more precise diagnosis, surgical 

planning, and follow-up evaluation. 
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Abstract 

Aim 

The purpose of the study was to propose and validate an artificial intelligence (AI) assisted approach 

for quantifying volumetric bone graft changes on cone-beam computed tomography (CBCT) images 

following sinus augmentation.  

Materials and methods 

A total of 19 patients (9 males, 10 females; mean age: 57 yrs.) were recruited who underwent sinus 

augmentation (n = 24, 5 bilateral, 14 unilateral) using the lateral window sinus floor elevation 

technique. Twelve sinuses were filled with deproteinized bovine bone mineral (DBBM), while the 

other 12 sinuses with a Leukocyte and Platelet Rich Fibrin (L-PRF) block prepared by mixing DBBM 

(50%) and L-PRF (50%). All patients had preoperative (T0), immediate postoperative (T1) and 6 

months postoperative (T2) CBCT images. Maxillary sinus was automatically segmented from T0 and 

registered T1, and T2 scans using an AI-based platform. The volumetric difference of the sinus at T0-

T1 provided the bone gain following augmentation, while the T1-T2 difference revealed graft 

resorption at 6 months follow-up. The accuracy of segmentation and reproducibility of the technique 

were assessed using the relative technical error of measurement (rTEM) and intra-class correlation 

coefficient (ICC), respectively. 

Results 

Based on rTEM values, the methodology was found to be highly accurate (0.2% to 0.25%), and ICC 

revealed excellent inter- and intra-observer reliability, ranging from 0.98 to 0.99. The average bone 

graft volumetric gain was 2.11±1.25 cm3 (DBBM: 2.23±1.43 cm3, L-PRF block: 1.63±0.7 cm3). At 

follow-up, minor bone resorption of 5.3% was observed, where DBBM showed slightly lower 

resorption (4.3%) compared to L-PRF block (6.3%) without any significant difference. 

Conclusion 

With the assistance of AI-based segmentation, the proposed methodology provides a reliable, 

accurate, and time-efficient method for evaluating volumetric bone graft changes following a sinus 

augmentation procedure. This methodology could lay a platform for further simplifying follow-up 

assessment protocols, where both time and accuracy are of the essence for clinicians and researchers.  

 

Keywords: artificial intelligence, volume change, grafting materials, sinus floor elevation, CBCT. 
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1. Introduction 

 

Placement of dental implants in the maxillary posterior region is a challenging task in patients with 

severe bone loss due to alveolar bone atrophy and maxillary sinus pneumatization. The presence of 

insufficient bone volume could adversely impact the short- and long-term stability of a dental implant 

and lead to implant failure.  In such patients, maxillary sinus augmentation, also referred as sinus 

floor elevation, is one of the most common surgical procedures performed for creating sufficient bone 

volume to allow for either simultaneous or delayed implant placement with optimal stability and a 

high survival rate. The procedure involves lifting the Schneiderian membrane from the underlying 

sinus wall and insertion of a bone graft inferior to the membrane. The two main approaches for sinus 

floor elevation include, a direct approach with the lateral window technique and indirectly with 

transalveolar approach1-3.  

To date, various graft materials have been successfully used alone or in combination4 for sinus 

augmentation, which could be broadly classified as autograft5-8, allograft9-11, xenograft12-15, and 

alloplastic graft16-18. These grafts undergo natural resorption at varying rates19 depending on the type 

of material and other anatomical factors such as sinus angle, pressure exerted by the intra-sinus air 

during sinus re-pneumatization, and sinus width20. This subsequent resorption could significantly 

impact the success of implant treatment outcome. Hence, an accurate quantification of the volumetric 

graft resorption is essential for ensuring that sufficient dimensional stability is maintained for 

facilitating the long-term success of implants. 

Two-dimensional radiographic imaging, such as panoramic and periapical radiography, has been 

majorly applied for assessing graft dimensional changes over time21-25. However, it has certain 

inherent limitations, such as image magnification, distortion, patient positioning error, and structural 

superimposition. All of which contribute towards a large margin of error, unreliable measurements, 

and the failure to provide information related to the third dimension. Owing to these limitations, 3D 

CBCT21,26,27 has become the radiographic standard for sinus lift treatment planning and follow-up of 

graft changes and resorption through the assessment of sinus volumetric differences28-31. The CBCT 

images rely mostly on manual or semi-automatic segmentation algorithms for creating 3D surface-

rendered volumetric models, which are then used to quantify the changes at follow-up. These 

segmentation processes either carry a high risk of observer variability, dependency on third-party 

software programs whose threshold leveling is standardized based on CT images rather than CBCT 

images, a requirement of manual post-processing or excessive time-consumption.  
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Recently, artificial intelligence (AI)-based convolutional neural networks (CNNs), a multilayer 

structure-learning algorithm have been applied for automated segmentation of maxillary sinus with 

outstanding performances32. However, these networks still need to be applied for assessing graft 

changes following sinus augmentation. We hypothesize that the application of AI for segmentation 

could not only overcome the limitations associated with other protocols for achieving a precise and 

consistent outcome but also lay a platform towards simplification of the digital workflow for graft 

follow-up assessment. Hence, the following study aimed to introduce and validate an AI-assisted 

approach for quantifying volumetric bone graft changes on cone-beam computed tomography 

(CBCT) images following sinus augmentation.  

 

2. Material and methods 

This retrospective pilot study was conducted in compliance with the World Medical Association 

Declaration of Helsinki on medical research. Ethical approval was obtained from the Ethical Review 

Board of the University Hospitals of  Leuven, Belgium (reference number: S66689). Informed 

consent was not required as patient-specific information was anonymized.  

 

 2.1 Patients and radiographic examination 

A total of 19 patients (9 males, 10 females; mean age: 57 yrs.) were recruited who underwent sinus 

augmentation procedures (n = 24, 5 bilateral, 14 unilateral) at the Department of Periodontology and 

Oral Microbiology, KU Leuven, Leuven, Belgium. Out of these, 16 sinus augmentation procedures 

presented with all missing posterior teeth, while the remaining 8 sinuses required rehabilitation of 

only the first molar region. Inclusion criteria were adult patients in whom lateral approach was 

indicated with delayed implant placement and the presence of preoperative (T0), immediate 

postoperative (T1), and 6 months postoperative (T2) CBCT scans. Exclusion criteria involved 

patients with immediate implant placement and scans having motion artifacts and/or insufficient 

coverage of the grafted region.  

The total CBCT dataset consisted of 57 scans (T0: 19, T1: 19, T2: 19). All scans were acquired using 

NewTom VGI Evo® (QR, Verona, Italy) with scanning parameters of 0.3-0.15 mm voxel size, 8x5-

10x10 field of view, 110 kV, and 3.4 mA. The scans were saved in Digital Imaging and 

Communications in Medicine (DICOM) format for further processing.  
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2.2 Surgical procedures 

All surgical procedures were performed using the lateral window sinus floor elevation procedure by 

a single surgeon. Following delivery of local anesthesia (articaïne hydrochloride 4% with adrenaline 

1:100 000), a crestal incision was performed and a mucoperiosteal flap was raised.  The lateral 

window was prepared using piezosurgery (Piezotome II™, Acteon, Merignac, France) and the 

Schneiderian membrane was detached from the sinus walls using hand instruments. Thereafter, 

trapdoor osteotomy was applied, where the superior osteotomy cut remained partially incomplete and 

the lateral window was rotated and pushed in an inward direction. Out of the total sinus 

augmentations, 12 were filled using deproteinized bovine bone mineral (DBBM; 0.25–1.0 mm 

particulate, 0.5 g; BioOss™, Geistlich®, Wolhusen, Switzerland), while the other 12 were filled with 

Leukocyte and Platelet Rich Fibrin (L-PRF) block prepared by mixing DBBM (50%) and L-PRF 

(50%).  

2.3 Volumetric analysis 

The DICOM files of CBCT datasets were imported into Amira software (version 2021.2, Thermo 

Fischer Scientific, Merignac, France), where voxel-based registration was applied to align and 

superimpose T1 and T2 scans onto the T0 scan. This allowed to bring the images in the same 3D 

space and standardize the superior limit of the sinuses at T1 and T2 time-points at the same level of 

T0 scan (Figure 1). The T0 and registered T1 and T2 DICOM datasets were then imported to an 

online cloud-based AI system, known as ‘Virtual Patient Creator’ (Relu BV, Leuven, Belgium), 

where automated segmentation of the maxillary sinus was performed and saved in standard 

tessellation language (STL) format (Figure 2). The CNN framework of this task was configured based 

on multiple 3D U-Net models and standardized based on CBCT datasets, which has been previously 

described and validated.   

The STL files of sinus segmentations were then imported into Mimics Innovation Suite (version 23.0, 

Materialise N.V., Leuven, Belgium) for checking the visual quality of the segmentation, and 

refinements were performed if required. The software automatically generated the sinus volume at 

T0, T1, and T2 time-points. The graft volume was calculated as suggested by prior studies, where 

T0-T1 volumetric difference revealed the graft volume represented as bone gain and T1-T2 difference 

provided with the graft resorption at 6 months follow-up. Figure 3 illustrates the contours of the 

segmented sinus on CBCT images to visualize bone gain and resorption. Two maxillofacial 

radiologists with an experience of over 5 years (NM & FNR) performed the assessment independently 

and repeated the observations at an interval of 2 weeks for calculating the intra- and inter-observer 

reliability. 
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Figure 1. Voxel-based superimposition of cone-beam computed tomographic images. A. preoperative 

image (grey), B. immediate postoperative image (green), C. superimposed preoperative and immediate 

postoperative image, D. superior view showing bone graft on superimposed images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Automated segmentation of maxillary sinus on cone-beam computed tomographic images. A. 

preoperative image, B. immediate postoperative image, C. 6 months postoperative image. 
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Figure 3.  3D maxillary sinus model contours on coronal and sagittal views of cone-beam computed 

tomographic images. A. preoperative image, B) immediate postoperative view (blue) showing sinus 

changes represented by bone gain following sinus augmentation, C. superimposed immediate (blue) 

and 6 months postoperative view (yellow) showing sinus changes represented by bone resorption. 

 

 

2.4 Statistical analysis 

Data were analyzed using IBM SPSS Statistics for Windows (version 21.0, IBM Corp., Armonk, NY, 

USA). The Shapiro–Wilk test and Levene’s test were conducted to assess data normality and 

homoscedasticity, respectively. The mean and standard deviation values were calculated for all the 

data. The accuracy of segmentation was assessed through calculation of relative technical error of 

measurement (rTEM) according to the scale proposed by Camison et al33, based on which, <1% = 

excellent, 1–3.9% = very good, 4–6.9% = good, 7–9.9% = moderate, >10%= poor1. Intra-Class 

Correlation Coefficient (ICC) was applied at a 95% confidence interval for assessing the inter- and 

intra- observer reliability of the methodology, where <0.50 = poor reliability; 0.50–0.75 = moderate 

reliability; 0.75–0.90 = good reliability; >0.90 = excellent reliability34.  One-way analysis of variance 

(ANOVA) was applied for assessing volumetric differences at T0-T1 and T1-T2 time intervals. A p-

value of <0.05 was considered as statistically significant. 
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3. Results 

Visual inspection of the automated segmentations revealed that no refinements were required for T0 

models, while minor refinements were required for T1 and T2 models. Overall, the rTEM values were 

classified as excellent, ranging from 0.2% to 0.25%. In relation to the reproducibility of the 

methodology, both inter- and intra-observer ICC revealed excellent reliability for assessing 

volumetric differences at T0-T1 (intra-observer ICC: 0.99; inter-observer ICC: 0.98)  and T1-T2 

(intra-observer ICC: 0.99; inter-observer ICC: 0.98). Figure 4 illustrates the variation in volumetric 

measurements for both observers at all time points. The findings showed an average sinus volume of 

7.77±2.69 cm3 at T0, 5.66±1.74 cm3 at T1, and 5.78±1.79 at T2.  

 

Figure 4. Variation in volumetric measurements for both observers at all time-points. 

 

Table 1 describes the average bone gain (T0-T1) immediately after graft insertion and resorption at 

6 months (T1-T2). The average volumetric bone gain was 2.11±1.25 cm3 (DBBM: 2.23±1.43 cm3, 

L-PRF block: 1.63±0.7 cm3). At follow-up of 6 months, minor bone resorption of 5.3% was observed 

(0.11±0.13 cm3), where DBBM showed slightly lower resorption (4.3%) compared to L-PRF block 

(6.3%). The minimum and maximum resorption rates were 0.03 cm3 (1.4%) and 0.4 cm3 (14%), 

respectively. A significant volumetric difference existed between T0 and T1 (p= 0.025), whereas no 

significant difference was found at the T1-T2 interval (p = 0.989).  
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Table 1: Overview of average graft volume and graft remodeling.  
 

 

 

4. Discussion 

Three-dimensional post-surgical evaluation of the bone graft following sinus augmentation is 

essential for ensuring its optimal stability and a high success rate of implant treatment. Furthermore, 

the application of CNN-based AI models could further improve and simplify the follow-up 

assessment methodologies. Hence, the present study investigated the feasibility of applying AI-based 

automated segmentation for the volumetric assessment of bone graft resorption following sinus 

augmentation in the essence of improving the standard of follow-up assessment protocols.  

The findings suggested that minor segmentation refinements were required, and the methodology 

offered a very small relative technical error and excellent observer reliability.  These findings support 

the fact that automated segmentation has the ability to overcome limitations associated with both 

manual and semi-automatic segmentation software programs in terms of observer variability, human 

error, and time-consumption. Unlike these programs, the proposed segmentation approach was time-

efficient (bilateral sinus segmentation: 24 seconds per scan) with 100% consistency, which meant 

that the AI platform was able to generate a similar segmented model independent of the number or 

experience of observers.   

In the present study, the segmented maxillary sinus volumetric differences were used to assess the 

graft volume instead of directly segmenting the grafted bone. Even though previous studies35,36 have 

found manual segmentation of the graft on CBCT images to be accurate, the disadvantage of 

excessive time consumption for outlining the graft and dependency on observer experience cannot be 

ignored. It is also difficult to distinguish the graft from the host bone, especially following the healing 

period26. Furthermore, semi-automatic graft segmentation28,37 has been proposed as an alternative 

solution. However, the outcome based on segmented model was negatively impacted as the selected 

threshold level for segmentation caused either over- or under-estimation26 of the graft model and 

inaccurate volumetric representation due to the presence of neighboring bone with similar density.  

Graft Material Bone gain (Cm3) Bone change (Cm3) 
 
Overall (mean ± SD) 
 

2.11±1.25 0.11±0.13 

Bio-Oss (mean ± SD) 2.23±1.43 0.09±0.16 

L-PRF block (mean ± SD) 1.63±0.7 0,1±0.1 
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Hence, relying on maxillary sinus segmentation and reflecting its volumetric changes to graft changes 

could offer a more standardized approach.  

Based on the grafting material, autogenously derived bone has been regarded as the gold standard in 

sinus augmentation material. However, due to several limitations such as post-surgical complications 

at the donor site and increased risk of resorption and volume loss, other substitutes have been 

developed. Amongst these, DBBM, a well-known example of xenograft has been widely used for 

sinus augmentation due to its osteoconductive properties, angiogenesis enhancement, and bone 

neoformation38-41. Several studies have reported successful clinical and histological outcomes42-44 

while using it as a single graft material45-47. In addition, some studies48,49 have concluded that mixing 

L-PRF, an autogenous biomaterial,50,51 with DBBM might enhance bone regeneration and 

osseointegration. Our findings showed that the average resorption of DBBM was 4.3%, which was in 

accordance with the prior evidence. Lee et al.52 and Mazzocco et al.37, reported graft volume 

contraction of 8% and 10% at follow-up of 6 months and 8-9 months, respectively. These findings 

confirm the slow resorption properties of DBBM and its ability to be used solely53. The slight 

difference in bone resorption percentage compared to the aforementioned studies might be attributed 

to the differences in imaging modality, scanning parameters, methodology, sample size, and/or the 

follow-up duration. In contrast to our findings, Klein et al28 found an increase of 9.1% in bone volume 

measured 8 months after the surgery. They justified their finding by pointing out the broad range of 

thresholds that could neglect some hyperdense particles of DBBM.  

In cases treated with L-PRF/DBBM mixture, the resorption rate was comparable to that of DBBM 

alone without any significant difference. The selected ratio of the mixture was 50:50 which has been 

previously proven to be efficient for bone augmentation procedures54. However, the addition of L-

PRF did not impact the resorptive capacity of DBBM at 6 months which might be due to the fact that 

the bone substitute volume per tissue volume was similar for both types of augmentations. Only two 

studies55,56 were found investigating the application of L-PRF/DBBM mixture for sinus 

augmentation, which focused only on histological and histomorphometric comparisons and no studies 

existed assessing the radiographic changes. Hence, comparison with existing evidence was deemed 

difficult. Although 6 months follow-up period is considered sufficient for graft healing to support 

delayed implant57-59, it is necessary to quantify long-term volumetric graft resorption in future studies.  

It is worth noting that several factors could impact the volumetric differences, such as: preoperative 

bone quality and quantity, physicochemical variation in sinus pneumatization, re-pneumatization, 

surgical technique, Schneiderian membrane reflection, graft condensation, and graft material 

properties29. Furthermore, the graft material remodeling and resorption pattern have also been 

correlated to the features of the recipient region, such as volume of the recipient region, graft 
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thickness, surface area of the graft in contact with the basal bone and its projection into the sinus 

cavity60. Hence, all these factors need to be considered in future prospective studies to reach a better 

conclusion. 

The study had certain limitations. Firstly, the findings and statistical inferences of the present study 

should be interpreted with caution due to the limited sample size, and a follow-up period of 6 months 

might not be adequate for reaching a clinically-oriented outcome. However, the sample was enough 

for validating the methodology. Secondly, the grafted bone resorption was assessed without implant 

placement. Future studies with a large sample size and longer follow-up are required to assess if the 

graft remains stable over time and to investigate the impact of different implant placement protocols 

on bone resorption. It is also recommended to train AI-based models to automatically extract and 

segment bone grafts from CBCT images to further enhance the efficacy of the follow-up assessment 

protocols.   

 

5. Conclusion 

The proposed methodology proved to be reliable, accurate, and consistent for performing volumetric 

assessment of grafted bone changes with the assistance of automated AI-based sinus segmentation. It 

could provide a promising, simplified solution for clinicians to assess sinus augmentation outcomes 

and provide better insight into the 3D resorption phenomenon. This would further improve surgical 

outcomes and facilitate patient-specific planning. As for the amount of bone resorption, it was 

minimal at 6 months follow-up for both DBBM and DBBM/ L-PRF mixture. Future prospective 

studies are warranted to investigate both short- and long-term volumetric stability of different grafting 

materials.   
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General discussion 

 

Accurate segmentation of midfacial structures such as skeletal structures and the maxillary sinus, is 

a prerequisite in the majority of dentomaxillofacial workflows for creating a 3D virtual model. The 

main clinical applications where the midfacial virtual skeletal model is utilized include diagnostics, 

treatment planning, and follow-up evaluation of orthodontic treatment and reconstructive surgical 

procedures1-5. In addition, virtual modeling of the maxillary sinus is beneficial for presurgical 

planning of surgical tooth extraction, implant placement, sinus augmentation6, 7, and reconstructive 

surgical procedures8.  

When considering the segmentation process, automatization of this task through the integration of 

CNN-based models is an important factor to consider for overcoming the inherent limitations 

associated with manual or semi-automated segmentation algorithms. Thereby, allowing to increase 

the time-efficiency and precision regardless of the operator's experience. Recently, 3D U-Net based 

deep learning models have been successfully applied for the segmentation of various 

craniomaxillofacial anatomical structures such as mandible9, 10, mandibular canal11, 12, pharyngeal 

airway space13, and teeth14, 15. However, no evidence has been reported related to the application of 

CNNs for segmentation of midfacial structures. Therefore, the present thesis builds on well-

established research aims and questions, going from the validation of CNN-based automated 

approaches for segmentation of the midfacial skeletal complex and maxillary sinus to the deployment 

of these networks within specific clinical workflows. This integration of automated segmentation in 

digital workflows could decrease a surgeon’s load and improve the precision of diagnostics, treatment 

planning, and follow-up evaluation of patients where the midfacial region is involved, such as in 

orthognathic surgery, reconstructive surgery, traumatology, and dental implant surgery.  

Firstly, CNN-based models were validated, and their performance was evaluated for the automated 

segmentation of midfacial structures. In article 1, we investigated the performance of a deep CNN-

based model for the automated segmentation of the midfacial skeletal complex on CBCT images. 

Based on the performance metrics, the average time required for automated segmentation was 39.07s, 

compared to the corresponding manual time of 132.7 min. The CNN model demonstrated a high DSC 

value of 92.6%, thereby confirming high similarity between automated and manual segmentation. 

The qualitative visual examination of automated segmentation revealed that corrections were required 

to improve the final segmentation. At the same instance, a DSC value of 99.8% existed between 

automated and refined models, which confirmed a high degree of similarity between them and 

indicated that minor corrections were required.  
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In article 2, we investigated the accuracy, consistency, and time-efficiency of a deep CNN-based 

model for automated maxillary sinus segmentation on CBCT images in comparison to semi-

automated segmentation as the reference standard. Based on performance metrics, the average time 

required for automated segmentation (for both sinuses) was 24.4s, compared to 60.8 min with semi-

automated approach. The CNN model showed a high DSC of 98.4%, indicating that minimal 

corrections were required. Based on the visual examination of automated segmentations, 70% of the 

testing set was categorized as perfect segmentation requiring no refinements, while the remaining 

30% required minor corrections. Intra- and inter-observer reliability showed excellent consistency, 

with DSC values of 98.4% and 99.6%, respectively. The models in both articles were able to generate 

identical segmentation results if a similar scan was processed, thereby confirming their consistency 

and independence from observer’s experience-based variabilities. Furthermore, the models were 

trained using two CBCT devices with different scanning parameters and presence of metallic artifacts 

for ensuring its generalizability.  

The architecture pipeline of CNN models in both article 1 and article 2 was similar, as illustrated in 

Figure 1, yet minor differences existed related to their performance metrics and time-efficiency. The 

average timing for sinus segmentation was slightly less than for the midfacial skeletal complex. This 

might be attributed to the difference in FOV and complexity of the datasets, where midfacial skeletal 

data had a larger FOV and complex anatomy, requiring more time for data processing. Considering 

the segmentation performance, the maxillary sinus showed a higher DSC value than the midfacial 

complex. Unlike the maxillary skeletal region, the sinus is a well-defined structure with distinct 

surrounding borders, which makes it easier for the CNN to learn the features. However, it should be 

kept in mind that certain cases were prone to lower performance. For instance, the CNN model was 

not able to appreciate the margins of the skeletal complex where narrow or ill-defined sutures existed. 

In addition, performance dropped in cases where mucosal thickening was observed in the sinus 

region. Hence, incorporating larger heterogenous datasets might lead to higher performance.  

The findings of both articles were in accordance with our hypothesis that CNN models offered an 

accurate, consistent, and time-efficient segmentation approach compared to manual or semi-

automated approaches. The proposed CNN models could allow for accurate 3D virtual model creation 

in clinical digital workflows for diagnostics and treatment planning. More importantly, the CNN 

model was integrated into an interactive online platform that fits the current demand of a clinical 

practice by offering a user-friendly approach without the need of an experienced operator or a 

computer with high computational power. However, both articles shared main limitations, such as a 

lack of data heterogeneity and the need for a third-party software program for performing required 

corrections as the online platform lacked a correction service. In addition, the model in article 1 was 



 
General discussion, conclusions, and future perspectives | 117 
 
 

only able to segment the midfacial complex as a whole, not individual skeletal structures. On the 

other hand, the model in article 2 was only able to delineate the sinus bony borders without 

considering the sinus mucosal thickening. 

Individual anatomical structures segmentation is important for defining the normal anatomy, 

differentiating it from pathological conditions, and 3D evaluation of specific regions of interest. On 

the other hand, multi-structural segmentation is equally important for providing a complete picture 

of the patient and for investigating relationship with the surrounding structures. Therefore, in article 

3, we assessed the qualitative and quantitative performance of an integrated tri-CNN model for the 

creation of a segmented MVP consisting of the midfacial complex, maxillary sinuses, and teeth from 

CBCT images. The main focus of this study was to observe the number of refinements required to 

achieve a perfect segmentation of a virtual patient, which could further allow to know the deficiencies 

and improve the model performance. As the clinical relevance of such refinements might vary 

depending on the task at hand, for example, diagnostics and treatment planning require more refined 

segmentation compared to visualization and patient education. Moreover, each type of refinement 

might be more relevant in a specific clinical specialty compared to another one. The qualitative 

assessment based on visual inspection revealed no overlap between the three anatomical structures. 

On a scale of 0 to 10, representing the number of refinements required (where 0 = ten or more 

refinements, 10 = no refinement), 85% of the dataset showed a score of 7 or more, and 15% were 

within the range of 3-6. Regarding the quantitative assessment, the average time required for 

automated segmentation was 1.7 min. A DSC of 99.3% existed between automated and refined 

segmentation, implying that minimal refinements were required. Interobserver consistency of the 

refinements also showed a high DSC value of 99.8%, suggesting a substantial agreement between 

observers. Furthermore, in this study, one of the previously mentioned limitations of using third-party 

software programs for refinements was solved by incorporating smart correction tools into the online 

platform. On the basis of these findings, the integrated CNN models could act as a clinically viable 

tool for multiple applications in orthodontics and reconstructive surgery, where analyzing both the 

segmented structures and their relationship with the surrounding tissue is essential for reaching an 

accurate diagnosis and patient-specific treatment planning.  

Even though the CNN-based deep learning algorithms showed promising performance, it is still vital 

to assess their performance and technical errors for different clinical applications involving 

segmentation of the midfacial structures. In article 4, we used the validated tool in article 1 to 

quantify the symmetry of the midfacial complex on CBCT images of skeletal class I patients. We 

hypothesized that the automation of the segmentation step would improve the precision and time-

efficiency of the symmetry evaluation process in combination with automated mirroring and 
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registration. This could improve clinical outcomes in patients requiring reconstructive surgical 

planning through mirroring. The visual assessment of the automated segmentations showed that 20% 

of the whole dataset required minor correction. The rTEM values ranged from good to excellent for 

both intra- and inter-observer error, thereby supporting the clinical applicability of the proposed 

methodology. Overall, mean and root mean square differences between true and mirrored models 

were within a range of 1mm, and no significant difference existed between left and right sides. Hence, 

further justifying the applicability of the proposed technique for mirroring reconstructive surgical 

techniques. Moreover, female patients showed higher midfacial complex symmetry than male 

patients. This could be attributed to the differences in growth patterns, facial proportions, and 

masticatory frequencies16, 17. The presented findings could be used as a reference guide by surgeons 

when evaluating asymmetry and help with the decision-making for restoring midfacial defects. 

Furthermore, the proposed automated approach could be a viable alternative for achieving a precise 

diagnosis, surgical planning, and follow-up evaluation. 

It should be noted that the proposed methodology for symmetry assessment was in accordance with 

the currently applied computer-assisted surgical planning methodologies for restoration of unilateral 

facial defects18. However, in cases with severe asymmetry, the closest point from one surface to 

another is not guaranteed to be an anatomically corresponding point, which might generate a strong 

underestimation of the actual asymmetry19. Hence, further studies are required to investigate 

alternative approaches for implementation in the surgical planning of such patients. Claes et al.19 

proposed a spatially-dense and robust 3D facial asymmetry assessment protocol utilizing a weighted 

least squares superimposition that proved to be accurate when applied to subjects with both typical 

and disordered growth patterns. Besides, it allowed for quantifying a percentage of asymmetrical 

facial areas. Implementation of such methodology within the surgical planning protocols would be 

beneficial for pre- and post-surgical symmetry evaluation, especially for asymmetric cases. 

Furthermore, it could enhance the precision of mirroring reconstructive surgical procedures.  

In article 5, the tool validated in article 2 was used to quantify volumetric bone graft changes on 

CBCT images following lateral window sinus augmentation at three time points: T0 (presurgical), T1 

(immediate postsurgical), and T2 (6 months postsurgical). This quantification is essential to ensure 

graft stability and predictability of success rates following implant placement. Visual inspection of 

the automated segmentations revealed that no refinements were required for cases at T0 time-points, 

while minor refinements were required for models generated at T1 and T2 time-points. Overall, rTEM 

values were classified as excellent, ranging from 0.2% to 0.25%. Both inter- and intra-observer ICC 

revealed excellent reliability for assessing volumetric differences, implying the reproducibility of the 

methodology.  
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Based on the findings of articles 4 and 5, automated segmentation proved to be clinically applicable 

for the assessment of skeletal symmetry and maxillary sinus changes. Further studies should be 

conducted to observe the performance and accuracy of automated segmentation in other clinical 

workflows and to determine whether it could act as a more accurate, reliable, and simplified 

alternative compared to conventional techniques.  

 

Conclusions 

 

The creation of a 3D virtual model through segmentation of dentomaxillofacial structures on CBCT 

images lies at the realm of various digital dental workflows. Integration between AI algorithms and 

dentomaxillofacial imaging has the ability to revolutionize clinical practice. Hence, this doctoral 

thesis focused on the value that AI can bring to the field of dentomaxillofacial radiology in the form 

of automated segmentation. The following conclusions can be drawn: 

-The proposed CNN models proved to be highly time-efficient with optimal performance for the 

segmentation of midfacial structures, including the maxillary skeletal complex, maxillary sinus, and 

teeth. 

-The CNN models could act as a plausible alternative to conventional manual and semi-automated 

segmentation approaches, and have the ability to improve the final treatment outcome and further 

enhance the level of patient care.  

-The implementation of these automated tools in digital workflows for symmetry assessment and 

sinus changes confirmed their clinical applicability.  

-The deployment of CNN models on an online cloud-based platform overcomes the need for high-

performance computers; hence, reducing the costs for AI implementation in hospital settings.  

 

Future perspectives 

 

-  Generally, artificial intelligence-based models have limited value in a daily clinical practice owing 

to the lack of model generalizability and data heterogeneity. There is still room for improvement 

before these models can be applied at a global level by incorporating training datasets acquired from 

different CBCT devices with various scanning parameters.  
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- Future studies should not only aim to develop models for the segmentation of normal anatomical 

structures but also focus on adding pathological cases, such as pathological sinus conditions, bone 

lesions, dentomaxillofacial fractures and craniofacial anomalies. The addition of such conditions in 

the training dataset could improve the standard of patient care. It is also essential to incorporate the 

validated individual and multi-structural segmentation approaches in different dentomaxillofacial 

planning workflows to assess their clinical applicability. Additionally, further studies should consider 

a combination of data from CBCT images, intra-oral scanner and/or facial scanners to enhance the 

delivery of personalized dental care. 

- Further improvement of the online platform is required. In addition to smart tools for correction, 

extra tools for performing measurements, analysis, and boolean operations should be incorporated. 

Besides, it is also recommended to later implement algorithms for achieving automated treatment 

planning of various dentomaxillofacial procedures without the need for human intervention. 

- Although U-net is most widely used for medical images, further studies should compare the 

performance of different networks20.  for the segmentation task on CBCT images, which has not been 

thoroughly investigated. At present, models lack standardization, CE certification, and medical device 

regulation (MDR) compliance, which should be considered going forward before their 

implementation in clinical practice. Furthermore, the cost–benefit ratio and cost effectiveness of AI 

need to be established.  

- In relation to symmetry the assessment protocol, studies are required to establish automated 

segmentation approaches for individual structural segmentation and to evaluate the impact of these 

structures on the overall facial symmetry. Furthermore, future studies should investigate alternative 

approaches for surface registration taking the closest points as the corresponding points between the 

two surfaces.  

-  For sinus graft follow-up, further studies with a large sample size and longer follow-up are required 

to assess if the graft remains stable over time and to investigate the impact of different implant 

placement protocols on bone resorption. It is also recommended to train AI-based models to 

automatically extract and segment bone grafts from CBCT images to further enhance the efficacy of 

the follow-up assessment protocols.   
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Figure 1. Flowchart of proposed methodology in article 1 & 2. 
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Summary 

 

 

 

 

The integration of digital technology within each step of a dental workflow has transformed dentistry, 

as it can render the dental procedures in a more efficient way, saving time, increasing accuracy, 

facilitating the treatments, and improving the outcome to meet rising patient demands.  

The first and most essential step in the majority of digital dental workflows is image segmentation in 

order to generate 3D models of the dentomaxillofacial structures, any flaw in this step would 

contribute towards accumulation of error in the later steps. 

Considering the limitations of the conventional segmentation methods, recent application of deep 

convolutional neural networks (CNNs) has outperformed the previously available algorithms for 

modelling of the dentomaxillofacial region. These CNNs have been successfully applied with 

promising results for the CBCT-based automated segmentation of the teeth, pharyngeal airway space, 

inferior alveolar nerve canal, and mandible. However, a lack of evidence exists related to the CNN-

based automated segmentation of the midfacial structures.  

Hence, The overall aim of the PhD project is twofold. Firstly, to develop a tool for automatic 

segmentation of the midfacial structures (bone and air) on CBCT images. Secondly, to incorporate 

these automated virtual 3D models in clinical applications to assess its performance in the digital 

workflow. The hypothesis behind this work is that a deep CNN approach could offer a more accurate, 

consistent, and time-efficient segmentation compared to the present conventional approaches. 

Besides, it could deliver accurate and ready-to-print 3D models that are essential to patient-specific 

digital treatment planning. 

In articles 1,2 we investigated the performance of a deep CNN-based model for the automated 

midfacial complex bone and maxillary sinus segmentation from CBCT images. Based on the findings 

of both articles, the proposed CNN models provided fast, accurate, and consistent CBCT based 

automated segmentation, which could allow accurate 3D virtual models creation for diagnosis and 

treatment planning. 
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In article 3, we assessed the qualitative and quantitative performance of an integrated tri-CNN models 

for the creation of a segmented MVP consisting of midfacial complex, maxillary sinuses, and teeth 

from CBCT images. On the basis of the findings of this study, the integrated CNN models could 

provide a clinical valuable tool for multiple applications in orthodontics and maxillofacial surgery, 

where studying both the individual structure and its surrounding is essential to reach accurate 

diagnosis and patient-specific treatment planning. 

In article 4, we used the developed tool in article 1 to quantify the symmetry of midfacial complex 

on CBCT images of skeletal class I patients. The rTEM ranged from good to excellent for both intra- 

and inter observer error supporting the clinical applicability of the proposed methodology. The overall  

mean and RMS differences between true and mirrored models were within a range of 1mm, and no 

significant difference existed between left and right sides, which justifies the applicability of 

mirroring reconstructive surgical techniques. Based on the results of this study, the proposed 

automated approach could be a viable alternative for more precise diagnosis, surgical planning, and 

follow-up evaluation. 

In article 5, the developed tool in article 2 was used to assist for quantifying volumetric bone graft 

changes on CBCT images following lateral window sinus augmentation at three time points T0 

(presurgical), T1 (immediate postsurgical), and T2 (6 months postsurgical). This quantification is 

essential to ensure the graft stability and predictability of high success rate after implant placement. 

The average bone gain immediately after graft insertion was 2.11±1.25 cm3, while at follow-up of 6 

months, minor bone resorption of 5.3% was observed (0.11±0.13 cm3). The overall rTEM values 

were classified as excellent, ranging from 0.2% to 0.25%. Both inter- and intra-observer ICC revealed 

excellence reliability for assessing volumetric differences, implying the reproducibility of the 

methodology. 

The findings of this doctoral thesis showed that the proposed CNN models proved to be fast, accurate, 

and consistent, alternative to the conventional manual and semi-automated segmentation methods, 

rendering the clinical procedures in more efficient and easier way for the operator as well as 

improving the final outcome for the patients. 
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Samenvatting 
 

 
 

 

De integratie van digitale technologie in elke stap van een tandheelkundige workflow heeft de 

tandheelkunde veranderd, omdat het de tandheelkundige procedures op een efficiëntere manier kan 

weergeven, tijd bespaart, de nauwkeurigheid verhoogt, de behandelingen vergemakkelijkt en het 

resultaat verbetert om aan de toenemende eisen van de patiënt te voldoen.  

De eerste en meest essentiële stap in de meeste digitale tandheelkundige workflows is 

beeldsegmentatie om 3D-modellen van de dentomaxillofaciale structuren te genereren. 

Gezien de beperkingen van de conventionele segmentatiemethoden heeft de recente toepassing van 

diepe convolutionele neurale netwerken (CNN's) de eerder beschikbare algoritmen voor de 

modellering van het dentomaxillofaciale gebied overtroffen. Deze CNN's zijn met succes toegepast 

met veelbelovende resultaten voor de CBCT-gebaseerde automatische segmentatie van de tanden, de 

faryngeale luchtwegruimte, het nervus alveolaris inferior en de onderkaak. Er is echter een gebrek 

aan bewijs met betrekking tot de CNN-gebaseerde automatische segmentatie van de midfaciale 

structuren.  

De algemene doelstelling van het doctoraatsproject is dan ook tweeledig. Ten eerste, het ontwikkelen 

van een tool voor automatische segmentatie van de midfaciale structuren (bot en lucht) op CBCT 

beelden. Ten tweede, het opnemen van deze geautomatiseerde virtuele 3D-modellen in klinische 

toepassingen om de prestaties ervan in de digitale workflow te beoordelen. De hypothese achter dit 

werk is dat een diepe CNN-benadering een nauwkeurigere, consistentere en tijdsefficiëntere 

segmentatie kan bieden dan de huidige conventionele benaderingen. Bovendien zou het nauwkeurige 

en printklare 3D-modellen kunnen opleveren die essentieel zijn voor patiënt-specifieke digitale 

behandelplanning. 

In artikels 1,2 onderzochten wij de prestaties van een diep CNN-gebaseerd model voor de 

geautomatiseerde segmentatie van het middengehemeltecomplex en de sinus maxillaris uit CBCT-

beelden. Uit de bevindingen van beide artikelen blijkt dat de voorgestelde CNN-modellen een snelle, 

nauwkeurige en consistente CBCT-gebaseerde automatische segmentatie opleveren, waarmee 

nauwkeurige virtuele 3D-modellen kunnen worden gemaakt voor diagnose en behandelplanning. 
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In artikel 3 evalueerden wij de kwalitatieve en kwantitatieve prestaties van een geïntegreerd tri-CNN 

model voor het maken van een gesegmenteerd MVP bestaande uit het middengezichtscomplex, de 

maxillaire sinussen en de tanden op basis van CBCT beelden. Op basis van de bevindingen van deze 

studie zouden de geïntegreerde CNN-modellen een klinisch waardevol hulpmiddel kunnen vormen 

voor meerdere toepassingen in de orthodontie en de maxillofaciale chirurgie, waar het bestuderen van 

zowel de individuele structuur als de omgeving ervan essentieel is om tot een nauwkeurige diagnose 

en patiënt-specifieke behandelplanning te komen. 

In artikel 4 hebben wij het in artikel 1 ontwikkelde instrument gebruikt om de symmetrie van het 

middengezichtscomplex te kwantificeren op CBCT-beelden van skeletklasse I-patiënten. De rTEM 

varieerde van goed tot uitstekend voor zowel intra- als interobservatiefouten, wat de klinische 

toepasbaarheid van de voorgestelde methode ondersteunt. De totale gemiddelde en RMS-verschillen 

tussen ware en gespiegelde modellen lagen binnen een bereik van 1 mm, en er was geen significant 

verschil tussen linker- en rechterzijde, wat de toepasbaarheid van spiegelende reconstructieve 

chirurgische technieken rechtvaardigt. Op basis van de resultaten van deze studie zou de voorgestelde 

geautomatiseerde aanpak een haalbaar alternatief kunnen zijn voor een nauwkeuriger diagnose, 

chirurgische planning en follow-up evaluatie. 

In artikel 5 werd het in artikel 2 ontwikkelde instrument gebruikt als hulpmiddel voor het 

kwantificeren van volumetrische veranderingen in het bottransplantaat op CBCT-beelden na een 

sinusaugmentatie op drie tijdstippen: T0 (vóór de operatie), T1 (onmiddellijk na de operatie) en T2 

(6 maanden na de operatie). Deze kwantificering is essentieel voor de stabiliteit van het transplantaat 

en de voorspelbaarheid van een hoog succespercentage na plaatsing van het implantaat. De 

gemiddelde botwinst onmiddellijk na het inbrengen van het transplantaat was 2,11±1,25 cm3, terwijl 

bij de follow-up van 6 maanden een geringe botresorptie van 5,3% werd waargenomen (0,11±0,13 

cm3). De totale rTEM-waarden werden geclassificeerd als uitstekend, variërend van 0,2% tot 0,25%. 

Zowel de inter- als intra-observer ICC toonde een uitstekende betrouwbaarheid voor de beoordeling 

van volumetrische verschillen, hetgeen de reproduceerbaarheid van de methodologie impliceert. 

De bevindingen van dit proefschrift toonden aan dat de voorgestelde CNN-modellen een snel, 

accuraat en consistent alternatief bleken te zijn voor de conventionele manuele en semi-automatische 

segmentatiemethoden, waardoor de klinische procedures efficiënter en gemakkelijker verlopen voor 

de operator en het eindresultaat voor de patiënten verbetert. 



Scientific acknowledgements | 128 
 

SCIENTIFIC 
ACKNOWLEDGEMENTS 

 

 

 

 

This work could not have successfully reached its completion without the scientific contribution from certain 

individuals whom I would like to extend my gratitude.  

 

Article 1: I would like to thank Flavia Preda for being the first shared author of this study, providing equal 

contributions to me as well as coordinating responsibility for the research execution. Thanks to the efforts of 

Fernanda Nogueira-Reis and Xiaotong Wang for their valuable contributions in data labeling and clinical 

validation. 

 

Article 2: Thanks to the efforts of Karla de Faria Vasconcelos for her valuable contribution as a second 

observer of this study.  

 

Article 3: I would like to thank Fernanda Nogueira-Reis for her help in designing the protocol of this study 

and providing data visualization.  

 
Article 1-3: I would like to thank  ReLu team (Adriaan Van Gerven, Andreas Smolders, Stefanos Nomidis, 
and Holger Willems) for the help to build and train the related networks and for providing computing 

resources. 

 

Article 4: I would like to thank Sohaib Shujaat and Kevin Dotremont for their help in designing the protocol 

of this study and checking the clinical and technical aspects of the manuscript, respectively. Thanks to the 

efforts of Omid Jazil for his valuable contribution as a second observer of this study. 

 

Article 5: I would like to thank Simone Cortellini for providing research data. Thanks to Sohaib Shujaat for 

his help in preparing the published work. Thanks to the efforts of Fernanda Nogueira-Reis for her valuable 

contribution as a second observer of this study. 

 

 

Lastly, I would like to sincerely acknowledge my promoter, Prof. Dr. Reinhilde Jacobs for her scientific 

support and contributions throughout the duration of the PhD.  



PERSONAL 
CONTRIBUTIONS 

The author, Nermin Morgan, devised the projects and the main conceptual ideas, collected patients’ clinical 

and radiological data, performed the experiments, analyzed data, and took the lead in writing the (peer-

reviewed) manuscripts with scientific support from her promoter, Prof. Dr. Reinhilde Jacobs. The detailed 
personal contributions for each article are as follows: 

Article 1 (shared first authorship): Conceptualization, Methodology (dataset segmentation/clinical evaluation), 

Validation, formal analysis, investigation, Data Curation, Writing – original draft, Writing – review & editing, 

Visualization. 

Article 2 (first author): Conceptualization, Methodology (dataset segmentation/clinical evaluation), Validation, 

formal analysis, investigation, Data Curation, Writing – original draft, Writing – review & editing, Visualization, 

Project administration.  

Article 3 (second author): Conceptualization, Methodology (segmentation refinements/clinical evaluation), 

Validation, formal analysis, investigation, Writing – original draft, Writing – review & editing. 

Article 4 (first author): Conceptualization, Methodology, Validation, formal analysis, investigation, Data 

Curation, Writing – original draft, Writing – review & editing, Visualization, Project administration. 

Article 5 (first author): Conceptualization, Methodology, Validation, formal analysis, investigation, Data 

Curation, Writing – original draft, Writing – review & editing, Visualization, Project administration. 

Personal contributions | 129 



Conflicts of interest | 130  
 

 
CONFLICTS OF INTEREST 

 

 

 

 

 

 

The author, Nermin Morgan, declares that Adriaan Van Gerven, Andreas Smolders, Stefanos Nomidis, and 

Holger Willems have professional relationships with Relu BV (ownership, development, and commercial 

interests), which may be considered as potential competing interests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Curriculum vitae and list of publications | 131 
 

 

 

CURRICULUM VITAE 

 

 

 

 

             Nermin Morgan 
Born on September 20th, 1990, in Dakahliya, Egypt 

  
 
Education 
 
2022                         Postgraduate studies in advanced medical imaging, KU Leuven, Belgium 

 

2021                         Equivalence to the Flemish degree of “Master of Science in Dentistry”      

                                 recognized by NARIC-Vlaanderen, Belgium 

 

2017                         Master of Oral Diagnosis and Radiology (MSc) Faculty of Dentistry,  
Mansoura University, Egypt 

                                       

2012                         Bachelor of Dental Surgery (B.D.S) Faculty of Dentistry,  
                                 Mansoura University, Egypt 
                                       

 

Experience 
 
2019 – Present               Doctoral researcher at OMFS-IMPATH research group, KU  
                                       Leuven (Image analysis and segmentation- academic research    
                                       writing- collaboration with RELU company)   

                                                              

2017 - Present               Teaching assistant of Oral Radiology and diagnostic sciences 

                                       Faculty of Dentistry, Mansoura University, Egypt 
                                        

2013 - 2019                   General Dentist  

                                      Outpatient clinics, Mansoura University Dental Hospital, Egypt 
                                       

2013 - 2017                   Clinical demonstrator of Oral Radiology and diagnostic sciences  

                                      Faculty of Dentistry, Mansoura University, Egypt 
 
                                       



Curriculum vitae and list of publications | 132 
 

Publications 
 

- Morgan N, Shujaat S, Jazil O, Jacobs R. Three-dimensional quantification of skeletal midfacial complex 

symmetry. Int J CARS (2022). https://doi.org/10.1007/s11548-022-02775-0 

- Nogueira-Reis F, Morgan N, Nomidis S, Van Gerven A, Oliveira-Santos N, Jacobs R, Tabchoury CPM. 

Three-dimensional maxillary virtual patient creation by convolutional neural network-based segmentation on 

cone-beam computed tomography images. Clin Oral Investig. 2022 Sep 17. doi: 10.1007/s00784-022-04708-

2. Epub ahead of print. PMID: 36114907. 

- Preda F, Morgan N, Van Gerven A, Nogueira-Reis F, Smolders A, Wang X, Nomidis S, Shaheen E, Willems 

H, Jacobs R. Deep convolutional neural network-based automated segmentation of the maxillofacial complex 

from cone-beam computed tomography - A validation study. J Dent. 2022 Jul 21:104238. doi: 

10.1016/j.jdent.2022.104238. Epub ahead of print. PMID: 35872223. 

- Morgan, N., Van Gerven, A., Smolders, A. et al. Convolutional neural network for automatic maxillary sinus 

segmentation on cone-beam computed tomographic images. Sci Rep 12, 7523 (2022). 

https://doi.org/10.1038/s41598-022-11483-3 

- Alqahtani KA, Shaheen E, Morgan N, Shujaat S, Politis C, Jacobs R. Impact of orthognathic surgery on root 

resorption: A systematic review. J Stomatol Oral Maxillofac Surg. 2022 Apr 25:S2468-7855(22)00100-8. doi: 

10.1016/j.jormas.2022.04.010. Epub ahead of print. PMID: 35477011. 

- Morgan N, Suryani I, Shujaat S, Jacobs R. Three-dimensional facial hard tissue symmetry in a healthy 

Caucasian population group: a systematic review. Clin Oral Investig. 2021 Aug 13. doi: 10.1007/s00784-021-

04126-w. Epub ahead of print. PMID: 34386858. 

- Aboelmaaty, W., Morgan, N., Abdelfadil, E. & Ashmawy, M. Accuracy of QuickScan Imaging Protocols of 

iCAT FLX CBCT in Assessment of Peri-implant Bone Defects. Egyptian Dental Journal 64, 2327-2336, 

doi:10.21608/edj.2018.76810 (2018). 

 

International Presentation 
 

- E-poster, “Automated prediction of graft volume for maxillary sinus augmentation”, European 
Association of Osseointegration Annual Congress 

Geneva, Switzerland - From 29th September to -1st  October 2022                     

- E-presentation, “Automated Segmentation of Midfacial Structures on CBCT Images Using Deep 
Convolutional Neural Network”, 18th   European Congress of DentoMaxilloFacial Radiology    

             Lublin, Poland - From 8-10th June 2022                     

https://doi.org/10.1038/s41598-022-11483-3


Curriculum vitae and list of publications | 133 
 

- Webinar presentation, “Automated CBCT Image Segmentation of the Maxillary Sinus”, The 
Department of Oral Medicine and Diagnostic Sciences at the King Saud University College of 
Dentistry 

             Riyadh, Saudi Arabia – on 28th June 2021 

- E-poster presentation, “Automatic Segmentation of Maxillary Sinus”, 23rd  International 
Congress of DentoMaxilloFacial Radiology    

             Gwangju, South Korea - From 28th April to 1st May 2021                     

- Chair session & Oral presentation, “Accuracy of Low Dose Imaging Protocols of CBCT in 
Assessment of Peri-implant Bone Defects”, 33rd  International Congress on Computer Assisted 
Radiology and Surgery   

             Rennes, France - From 17-21 June 2019       

- Oral presentation, " Assessment of dental implants by various radiographic techniques", 
Egyptian Dental Syndicate International Congress       

             Cairo, Egypt - From 13-15 September 2017  

- Oral presentation, “Detection of various width and depth of peri-implant crestal bone defects 
with different imaging modalities”, 31st  International Congress on Computed Assisted 
Radiology and Surgery    

             Barcelona, Spain – From 20-24 June 2017 

- Oral presentation, “Clinical accuracy of pre-bending of titanium reconstructive plates on 3D 
printed models from CBCT for mandibular defects”, 30th  International Congress on Computed 
Assisted Radiology and Surgery    

             Heidelberg, Germany – From 21-25 June 2016 

 

Awards 
 

- 1st prize oral presentation, 18th European Congress of DentoMaxilloFacial Radiology (2022)     

 

 

 

 



 

 

The author of this PhD manuscript, Nermin Morgan, obtained her degree in 
Bachelor of Dental Surgery (B.D.S.) from the Faculty of Dentistry, Mansoura 
University, Egypt (2007–2012), followed by an internship year at the faculty clinics. 
After her graduation, she worked there as a teaching assistant in the department of 
Oral radiology and Diagnostic sciences (2013–2019). Meanwhile, she has earned her 
master’s degree of Oral Diagnosis and Radiology (2017). The same year, she became 
a radiology specialist at the Ministry of Health in Cairo, Egypt. Her research work 
has focused on Cone Beam CT (CBCT) and its different clinical applications in the 
maxillofacial region.  

From June 2019 till December 2022, she was a PhD researcher in the OMFS-IMPATH 
research group, with Prof. Dr. Reinhilde Jacobs as her scientific promoter. The 
research topic for her PhD was focused towards automated segmentation of 
midfacial structures on CBCT images and its applications in clinical practice. During 
her PhD studies, she also achieved her degree in Postgraduate studies in advanced 
medical imaging at KU Leuven, Belgium. 

The first and most essential step in the majority of digital dental workflows is image 
segmentation in order to generate 3D models of the dentomaxillofacial structures; 
any flaw in this step would contribute towards the accumulation of error in the later 
steps. This doctoral thesis aimed, firstly, to develop a CNN-based deep learning tool 
for automated 3D segmentation of the midfacial structures on CBCT images. 
Secondly, to incorporate these automated virtual 3D models in clinical applications 
to assess their performance in the digital workflow. The outcomes of this thesis 
showed that the CNN models could act as a plausible alternative to conventional 
manual and semi-automated segmentation approaches and have the ability to 
improve the final treatment outcome and further enhance the level of patient care. 


	Front cover
	Nermin Morgan_PhD thesis
	PREFACE
	PERSONAL ACKNOWLEDGEMENTS
	General introduction
	Aims & Hypotheses
	ARTICLE 1
	Deep convolutional neural network-based automated segmentation of the maxillofacial complex from cone-beam computed tomography: A validation study
	ARTICLE 2
	ARTICLE 3
	ARTICLE 4
	ARTICLE 5
	Summary
	Samenvatting
	SCIENTIFIC ACKNOWLEDGEMENTS
	PERSONAL CONTRIBUTIONS

	Back cover



