TOOTH AUTOTRANSPLANTATION

The development and clinical application of CBCT-based tooth autotransplantation and imaging-based bioprinting techniques

Tooth autotransplantation:

Loss of permanent teeth is a particular challenge in children considering that alveolar bone growth is not yet complete and treatment approaches should adapt to both growth and developmental changes in the oral region to have the potential for long-term survival. This could be realized via autotransplantation, which is a biological approach for tooth replacement in young children. Key factor for its success is the preservation of the periodontium of the grafted tooth. However, the cut in vascular supply of the dental pulp can result in necrosis and in some cases this can lead to a loss of autotransplanted tooth. Thus the aim of this project is to compare the outcome of a novel approach using a CBCT-based surgical planning and transfer technique including a stereolithographic surgical guide and tooth replica to the outcome of a traditional autotransplantation protocol and also to explore the angiogenic and neurogenic properties of PDLSCs in order to develop a new therapeutic strategy in which topical application of specific angiogenic and neurogenic factors on the donor tooth, together with the surgical planning and stereolithographic model will improve the outcome of the autotransplantation technique.


Bioprinting for tooth and bone regeneration:

In dentistry, there is a wide array of patients suffering from missing or impaired tissues, including missing or lost teeth, congenital malformations, and dental trauma. Existing treatment strategies range from conservative approaches (e.g. endodontic treatment) to the use of dental implants and different types of bone grafts. Recently, there has been an increasing interest in tissue engineering strategies using 3D-printed biocompatible scaffolds, growth factors, and stem cells to mimic natural morphogenesis. However, the application of bioprinting poses several specific challenges due to the anatomical complexity and heterogeneity of dental tissues, including the root and pulp canal, periodontal ligament and alveolar bone. The current project aims to address these challenges by developing a dedicated bioprinting technique for dental applications, using an imaging-based design of the restored tissue followed by an optimized printing procedure.

PROJECT

Tooth autotransplantation


ETHICAL COMMITTEE NUMBER

S53225


DURATION

5 years


START

2014

CONTACT

mostafa.ezeldeen@kuleuven.be

Related projects and publications

Project 8: As Low Dose as Sufficient Quality: Optimization of Cone-beam Computed Tomographic Scanning Protocol for Tooth Autotransplantation Planning and Follow-up in Children


Researchers: M. EzEldeen, A. Stratis, W. Coucke, M. Codari, C. Politis, R. Jacobs


Published on:

EzEldeen M, Stratis A, Coucke W, Codari M, Politis C, Jacobs R. As Low Dose as Sufficient Quality: Optimization of Cone-beam Computed Tomographic Scanning Protocol for Tooth Autotransplantation Planning and Follow-up in Children. J Endod. 2017 Feb;43(2):210-217. doi: 10.1016/j.joen.2016.10.022. Epub 2016 Dec 24. PMID: 28027823.


As low dose as sufficient quality_figure 1
As low dose as sufficient quality_figure 2
As low dose as sufficient quality_figure 3

Project 7: Validation of cone beam computed tomography-based tooth printing using different three-dimensional printing technologies


Researchers: W. Khalil, M. EzEldeen, E. Van De Casteele, E. Shaheen, Y. Sun, M. Shahbazian, R. Olszewski, C. Politis, R. Jacobs


Published on:

Khalil W, EzEldeen M, Van De Casteele E, Shaheen E, Sun Y, Shahbazian M, Olszewski R, Politis C, Jacobs R. Validation of cone beam computed tomography-based tooth printing using different three-dimensional printing technologies. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016 Mar;121(3):307-15. doi: 10.1016/j.oooo.2015.10.028. Epub 2015 Nov 14. PMID: 26868470.


Validation of CBCT based tooth printing_figure 1
Validation of CBCT based tooth printing_figure 2
Validation of CBCT based tooth printing_figure 3
Validation of CBCT based tooth printing_figure 4
Validation of CBCT based tooth printing_figure 5
Validation of CBCT based tooth printing_figure 6
Validation of CBCT based tooth printing_figure 7
Validation of CBCT based tooth printing_figure 8
Validation of CBCT based tooth printing_figure 9
Validation of CBCT based tooth printing_figure 10

Project 6: Accuracy of segmentation of tooth structures using 3 different CBCT machines


Researchers: E. Shaheen, W. Khalil, M. Ezeldeen, E. Van de Casteele, Y. Sun, C. Politis, R. Jacobs


Published on:

Shaheen E, Khalil W, Ezeldeen M, Van de Casteele E, Sun Y, Politis C, Jacobs R. Accuracy of segmentation of tooth structures using 3 different CBCT machines. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017 Jan;123(1):123-128. doi: 10.1016/j.oooo.2016.09.005. Epub 2016 Oct 3. PMID: 27938942.


Accuracy of segmentation_figure 1
Accuracy of segmentation_figure 2
Accuracy of segmentation_figure 3

Project 5: Precision medicine using patient-specific modelling: state of the art and perspectives in dental practice


Researchers: P. Lahoud, R. Jacobs, P. Boisse, M. EzEldeen, M. Ducret, R. Richert


Published on:

Lahoud P, Jacobs R, Boisse P, EzEldeen M, Ducret M, Richert R. Precision medicine using patient-specific modelling: state of the art and perspectives in dental practice. Clin Oral Investig. 2022 Jun 10. doi: 10.1007/s00784-022-04572-0. Epub ahead of print. PMID: 35687196.


Precision medicine_figure 1
Precision medicine_figure 2
Precision medicine_figure 3
Precision medicine_figure 4

Project 4: 3D Printed Temporary Veneer Restoring Autotransplanted Teeth in Children: Design and Concept Validation Ex Vivo


Researchers: A. Al-Rimawi, M. EzEldeen, D. Schneider, C. Politis, R. Jacobs


Published on:

Al-Rimawi A, EzEldeen M, Schneider D, Politis C, Jacobs R. 3D Printed Temporary Veneer Restoring Autotransplanted Teeth in Children: Design and Concept Validation Ex Vivo. Int J Environ Res Public Health. 2019 Feb 11;16(3):496. doi: 10.3390/ijerph16030496. PMID: 30754648; PMCID: PMC6388193.


Temporary veneer restoring_figure 1
Temporary veneer restoring_figure 2
Temporary veneer restoring_figure 3

Project 3: Artificial Intelligence for Fast and Accurate 3-Dimensional Tooth Segmentation on Cone-beam Computed Tomography


Researchers: P. Lahoud, M. EzEldeen, T. Beznik, H. Willems, A. Leite, A. Van Gerven, R. Jacobs


Published on:

Lahoud P, EzEldeen M, Beznik T, Willems H, Leite A, Van Gerven A, Jacobs R. Artificial Intelligence for Fast and Accurate 3-Dimensional Tooth Segmentation on Cone-beam Computed Tomography. J Endod. 2021 May;47(5):827-835. doi: 10.1016/j.joen.2020.12.020. Epub 2021 Jan 9. PMID: 33434565.


AI for fast and accurate 3D tooth segmentation_figure 1
AI for fast and accurate 3D tooth segmentation_figure 2
AI for fast and accurate 3D tooth segmentation_figure 3

Project 2: Survival and success of autotransplanted impacted maxillary canines during short-term follow-up: A prospective case-control study


Researchers: K. Grisar, M. Smeets, M. Ezeldeen, E. Shaheen, L. De Kock, C. Politis, R. Jacobs


Published on:

Grisar K, Smeets M, Ezeldeen M, Shaheen E, De Kock L, Politis C, Jacobs R. Survival and success of autotransplanted impacted maxillary canines during short-term follow-up: A prospective case-control study. Orthod Craniofac Res. 2021 May;24(2):222-232. doi: 10.1111/ocr.12422. Epub 2020 Sep 1. PMID: 32777135.


Survival and success of autotransplanted_figure 1
Survival and success of autotransplanted_figure 2
Survival and success of autotransplanted_figure 3
Survival and success of autotransplanted_figure 4

Project 1: Use of CBCT Guidance for Tooth Autotransplantation in Children


Researchers: M. EzEldeen, J. Wyatt, A. Al-Rimawi, W. Coucke, E. Shaheen, I. Lambrichts, G. Willems, C. Politis, R. Jacobs


Published on:

EzEldeen M, Wyatt J, Al-Rimawi A, Coucke W, Shaheen E, Lambrichts I, Willems G, Politis C, Jacobs R. Use of CBCT Guidance for Tooth Autotransplantation in Children. J Dent Res. 2019 Apr;98(4):406-413. doi: 10.1177/0022034519828701. Epub 2019 Feb 20. PMID: 30786806.


CBCT guidance for tooth autotransplantation in children_figure 1
CBCT guidance for tooth autotransplantation in children_figure 2
CBCT guidance for tooth autotransplantation in children_figure 3
CBCT guidance for tooth autotransplantation in children_figure 4
CBCT guidance for tooth autotransplantation in children_figure 5